{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": { "nbsphinx": "hidden" }, "outputs": [], "source": [ "!pip install graph-pes" ] }, { "cell_type": "markdown", "metadata": { "vscode": { "languageId": "raw" } }, "source": [ "\n", "# Custom training loops\n", "\n", "> FYI, you can open this notebook in [Google Colab](https://colab.research.google.com/github/jla-gardner/graph-pes/blob/main/docs/source/quickstart/custom-training-loop.ipynb) and follow along interactively 😊\n", "\n", "\n", "`graph-pes` provides all the components you need to train a [GraphPESModel](https://jla-gardner.github.io/graph-pes/models/root.html#graph_pes.GraphPESModel) in any way you want.\n", "\n", "Here we'll implement a custom training loop involving gradient accumulation, and train a [SchNet](https://jla-gardner.github.io/graph-pes/models/many-body/schnet.html) model on the [QM7](https://jla-gardner.github.io/load-atoms/datasets/QM7.html) dataset.\n", "\n", "\n", "## 1. Data\n", "\n", "[GraphPESModel](https://jla-gardner.github.io/graph-pes/models/root.html#graph_pes.GraphPESModel) models act on [AtomicGraph](https://jla-gardner.github.io/graph-pes/data/atomic_graph.html#graph_pes.AtomicGraph) representations of atomic structures. `graph-pes` provides the [from_ase](https://jla-gardner.github.io/graph-pes/data/atomic_graph.html#graph_pes.AtomicGraph.from_ase) class method to easily convert between [ase.Atoms](https://wiki.fysik.dtu.dk/ase/ase/atoms.html#ase.Atoms) objects and [AtomicGraph](https://jla-gardner.github.io/graph-pes/data/atomic_graph.html#graph_pes.AtomicGraph) objects.\n", "\n", "Here we use the wonderful [load-atoms](https://jla-gardner.github.io/load-atoms/) package to load a dataset of [ase.Atoms](https://wiki.fysik.dtu.dk/ase/ase/atoms.html#ase.Atoms) objects, before converting them to [AtomicGraph](https://jla-gardner.github.io/graph-pes/data/atomic_graph.html#graph_pes.AtomicGraph) objects." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "cb46438c21944202b9c325ba232ad433", "version_major": 2, "version_minor": 0 }, "text/plain": [ "Output()" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "QM7:\n", " structures: 7,165\n", " atoms: 110,650\n", " species:\n", " H: 56.00%\n", " C: 32.32%\n", " N: 6.01%\n", " O: 5.40%\n", " S: 0.27%\n", " properties:\n", " per atom: ()\n", " per structure: (energy)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from load_atoms import load_dataset\n", "\n", "structures = load_dataset(\"QM7\")\n", "structures" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Split the dataset into training, validation and test sets. You can see that each of these [load_atoms.AtomsDataset](https://jla-gardner.github.io/load-atoms/api/dataset.html#load_atoms.load_dataset) objects is just a lightweight wrapper around a list of [ase.Atoms](https://wiki.fysik.dtu.dk/ase/ase/atoms.html#ase.Atoms) objects:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Atoms(symbols='CNC5H13', pbc=False)" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train, val, test = structures.random_split([0.8, 0.1, 0.1])\n", "train[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Convert the structures to [AtomicGraph](https://jla-gardner.github.io/graph-pes/data/atomic_graph.html#graph_pes.AtomicGraph) objects using a cutoff of 5.0 Å:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AtomicGraph(\n", " atoms=20,\n", " edges=314,\n", " has_cell=False,\n", " cutoff=5.0,\n", " properties=['energy']\n", ")" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from graph_pes import AtomicGraph\n", "\n", "train_graphs, val_graphs, test_graphs = (\n", " [AtomicGraph.from_ase(structure, cutoff=5.0) for structure in split]\n", " for split in (train, val, test)\n", ")\n", "train_graphs[0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Model\n", "\n", "Before we instantiate our model, let's create a quick helper function to visualise the performance of our model on the training and test sets:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "from graph_pes import GraphPESModel\n", "from graph_pes.utils.analysis import parity_plot\n", "\n", "%config InlineBackend.figure_format = 'retina'\n", "\n", "\n", "def analyse_model(model: GraphPESModel):\n", " for name, data, colour in zip(\n", " [\"Train\", \"Test\"],\n", " [train_graphs, test_graphs],\n", " [\"royalblue\", \"crimson\"],\n", " ):\n", " parity_plot(\n", " model,\n", " data,\n", " property=\"energy_per_atom\",\n", " units=\"eV / atom\",\n", " label=name,\n", " c=colour,\n", " )\n", "\n", " plt.legend(fancybox=False, loc=\"lower right\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now let's create a [SchNet](https://jla-gardner.github.io/graph-pes/models/many-body/schnet.html) model. To account for energy offsets, we wrap this PES model in a [AdditionModel](https://jla-gardner.github.io/graph-pes/models/addition.html#graph_pes.AdditionModel), and combine it with a [LearnableOffset](https://jla-gardner.github.io/graph-pes/models/offsets.html#graph_pes.models.LearnableOffset):" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "AdditionModel(\n", " schnet=SchNet(\n", " chemical_embedding=PerElementEmbedding(dim=16, elements=[]),\n", " interactions=UniformModuleList(\n", " (0-2): 3 x SchNetInteraction(\n", " (linear): Linear(in_features=16, out_features=16, bias=False)\n", " (cfconv): CFConv(\n", " Sequential(\n", " (0): GaussianSmearing(n_features=10, cutoff=5.0, trainable=True)\n", " (1): MLP(10 → 16 → 16, activation=ShiftedSoftplus())\n", " )\n", " )\n", " (mlp): MLP(16 → 16 → 16, activation=ShiftedSoftplus())\n", " )\n", " ),\n", " read_out=MLP(16 → 8 → 1, activation=ShiftedSoftplus()),\n", " scaler=LocalEnergiesScaler(trainable=True)\n", " ),\n", " offset=LearnableOffset(trainable=True)\n", ")" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import torch\n", "from graph_pes.models import AdditionModel, LearnableOffset, SchNet\n", "\n", "# ensure reproducibility\n", "torch.manual_seed(0)\n", "\n", "model = AdditionModel(\n", " schnet=SchNet(\n", " cutoff=5.0,\n", " channels=16,\n", " expansion_features=10,\n", " ),\n", " offset=LearnableOffset(),\n", ")\n", "model" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the model has not been fitted yet, and performs poorly on the training and test sets, predicting energies that appear to be very close to zero:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAJoCAYAAACOSZwoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAB7CAAAewgFu0HU+AACDp0lEQVR4nO3dd1hTZ/8G8PuEKagMEQVx771HHZWq1VaLe9WJdbe11da2rx2Otva1P4u11VqrVVy11r234ta6q7hABAUVEBUVkBFyfn/w5pSVECA5J+P+XFcuQ3LGN4Dh5uE530cQRVEEkYncjErDb1sS8U94ms5tGtd0wvg+7qhTxcno508+eAZxo7+CmJJqlOOlqxzwa9vJCPVpIj3m8zwGX+/7zCjHJ8sV7VYJX3f9r87nm9R0wrwp5fD3tZeYtTQBqekFv/U6OwqYMdYLreuXMGapRESUD5XSBZD1+vvaS3w0P15vIAaAf8LT8NH8ePx97aVRz5966Qbi3vnSaIEYABw1GXj31I+o8iRCeqxjxCGjHZ8sV6qD/uB6OTwNIReSMXOJYYEYAFLTRcxamoCbUfr/DxERUfExFJNJ3IxKU/yH/+OZiyC+NH6YcNCoMfTCcvg8j8HgSyvRNuqY0c9Blueee+UCt/l141OkZRTuj3Op6SKWbEksYlVERGQohmIyid+2JCr6wz/9ViRST102yrHyUyUxCl/v+wydb+9HCbXxRqLJch2p3qXAbRKeaYp07Mvhabj7MKNI+xIRkWHslS6ArE/Uw4wCp0zoov3hX9nHQec26bci8XzFNqRdCYMmOQUqVxc4NaqF0oG94Fi7KgDg+YptRTo/UVHcLFsXsaUrmPQc24+/wKSBniY9BxGRLWMoJqPbcfxFsfbX9cM/9dINPJ65KN8R4NSzV/Hs901wbtsEZWa+i7QrYcWqgchQaXZO2NTobZOf53Y0R4qJiEyJoZiMLryYP7zz++FvaBeJ1FOX8aD3B7Dzci9WDUSG0EDA4lc+QJRndZOfKyWtaFMviIjIMAzFZHQpqcX74Z37h7/URcLAi+bElFSoY+KKVQORIS74tcrRns+UXJx4CQgRkSnxXZaMzsW5eN9WuX/4F6mLhIbtt8n0ttfvZ/C2Xm52xTpXjYq659kTEVHxMRST0dUs5g/v7D/8Td1FgqioCnNxnbOjgIn93It1vp4dShVrfyIi0o+hmIwuoJg/vLP/8GcXCTJHhbm4Trsq3WstXNG4ZtFWbWxS00lvRxYiIio+hmIyuio+Dkb74V/sLhIqoXj7E+WSZudk8MV1TWo6Yd5kb2mZ5vF93OHsWLjvSWdHAeP6uBelVCIiKgSGYjIJY/3w1ySnFK8Qn/JIsytaQCfK7WbZuvjB/wu9F9e5Ogvwb1YCwV/5YN6UcqhT5d/vvzpVnDBjrJfB/ze0o8zZj0FERKYhiKLIK5LIJP6+9hKzlhq21LP2h792RE3rfo93kXr2apFreFK9Hn6tMhj9rvyJOo9uFPk4ZDvUKnuElmsI14wUOGe8RKpDCdxzr4wj1bvonEMsCEDHpiUwsoe7QdMcbkalYcmWRFzWs8hNk5pOGNfHnYGYiEgmDMVkUsX94Z8wbT6e/b6pyOe/3PxN/FJtGADA53kMOkYcQqXEu3DOeAkRQKn0F/B4+bTIxyfrEuVeBX80f6dQfYd1/UJn0PkeZmDH8Re4HZ2BlDQNXJxUqFHRAT07lOIcYiIimTEUkyyK+sM//VYkotuPKPJ5l4yYh3Mvy+ndJntYLpn6HCXULwEALx1KIMmpNLyS44scnDUQAIicp2RGRAAv7Z1h97+3vpcOJXDDuz521+2F2NIV4FFKhfcHesCnjD1Hc4mIbAhDMZm9+70mFaktm3O7pvi+wxcIjShkj+NcqjyJwNQjs+GUWbjjpKsc8GvbyQCACad/LvT+ZHx3PKrhz2aBOUaCvdxU8PFy0PlLGkdziYhsA0Mxmb3USzfwoPcHBS7xnJ3g4gzfrT9jaXg5bDmSVOwaGjy8XKhgG126Ila1HCuFrypPIgqc15zs4ALXDMMuLNRAgApF+68rAhCRdaGXIN2zLLpeuXYU+LmzO9LsnWEnavKdE9yzgwsmv+0lW71ERGT+GIqtlFqtRmxsLACgfPnysLe37BW9kw+eQdzorwwKxoKLM8ot+wauXdog6mEG3vnmYZHPO6GvGzYeSkLCs0yDgu3TEh74q/EwXKjYJt/nc89rzh3YCprKod3WWZ1apIsHte3EtN0TqjyJwJgzC1EuOb5QxzGErjcWfSE8yr0KSqY+g1eq7ukq0aX9sKrlOIPm/drbAeXL2GNiX3e80silwO2JiMh2MRRbqZiYGFSsWBEAEB0dDT8/P4UrKr7USzfweNavSD15Sec2zu2aosyMiXBuWld6bMqPcfhHz7xQXZrUdMK8KVnzkbV/Qg+NSIMQeRctrx+A35O7cFanIt3BGfHlqmKvXyfcL2nYCmfGog3RNR/dhHdSHJz1jGTfLFsXmxq9nW+YbHHvNAZdXgX3tOc699cAyFTZS2PLdpqMfOdKZwoq7KrTEzsbDNBbs65fDPRtc7xmF6xe9QoA4NOfY3H+Znqe47eq54g575fX+TqIiIjyw1BspawxFGul34rE8xXbkHY1HJqkFKhKusCpYU2UHtUbjrWq5Nn+ZlQaPpofb1BrOC1nRwHzJnsX6gIqQzptGEIAUKuSA1JSRTxKzERahghD/pe6OguoqX6INjcOoGxcFOzTXiLtf4E9rNUbcKhVGQAQ/yRT59zYwn5uiYjIugQFBWHq1KnSx19++SW++eYbBSuSD0OxlbLmUFwUxuiZbKjsF2Y9fZGJp88zkZxq2H8zdjMgIiKl5A7E5cqVw+3bt1GyZEkFq5IPQ7GVYijOS8kFE7IH5cSkTKSkagAIcHEW4F7Sjt0MiIhIUSdOnECHDh2kj20tEAMMxVaLoVg3ttgiIiLKq1OnTggJCbHJQAwwFFsthmIiIiIqrA8//BCzZ8+2uUAMgAttEREREdmiBw8e5Hnsp59+sslADDAUExEREdmcoKAg+Pn5Yc6cOUqXYjYYiomIiIhsiLbLhCiKmDZtGlatWqV0SWaBoZiIiIjIRuTXdq1v374KVmQ+GIqJiIiIbICt9yEuCEMxERERkZVjIC4YQzERERGRFWMgNgxDMREREZGVYiA2HEMxERERkZXK3ouYgVg/e6ULICIiIiLTCAoKAgCsW7cOt27dYiDWg8s8Wyku80xERERaGo0GKhUnCOjDzw4RERGRlQgKCsKQIUPyPM5AXDBOnyAiIiKyAtkvqlOr1Vi/fr3CFVkW/tpAREREZOFyd5k4fvw4NBqNghVZHoZiIiIiIguWX9u18PBwTpkoJH62iIiIiCwU+xAbD0MxERERkQViIDYuhmIiIiIiC8NAbHwMxUREREQWJDExEZ9++qn0MQOxcTAUExEREVkQd3d3rFy5EoIgMBAbEfsUExEREVmYYcOGwdPTE6+++ioDsZFwpJiIiIjIzO3cuRNqtTrHY927d2cgNiKGYiIiIiIzFhQUhICAADRp0iRPMCbjYSgmIiIiMlPZu0xcu3YNgYGByhZkxRiKiYiIiMxQfm3XFi9erGBF1o2hmIiIiMjMsA+x/BiKiYiIiMwIA7Ey2JLNBJKSknDx4kWcPXsWZ8+exblz5xAVFQUAqFy5snSfiIiIKDsGYuXIHoofPXqEO3fuIDY2FsnJyXBwcIC7uzsqVaqEGjVqwM7OTu6SjC4gIABHjhxRugwiIiKyIAsXLmQgVpDJQ3FycjK2bduGPXv24OjRo7h//77ObZ2cnNC0aVN07doVffr0QaNGjUxdnkmIoijd9/T0RIsWLXDq1CkkJSUpWBURERGZs7Zt28LBwQEZGRkMxAoQxOwJzoguXbqEBQsWYMOGDUhJSQGQMyzqLUoQAAD169fHe++9h+HDh8PFxcUUZZrEkiVLUKpUKbRs2RI1atQAAFSpUgV3796VbfpETEwMKlasCACIjo6Gn5+fyc9JRERExXPx4kWMGjUKJ0+eZCCWmdFD8aVLl/DVV19hz549AP4NwuXLl0erVq3QvHlzeHt7w9PTEx4eHnj58iWePHmCp0+fIiwsDOfOncOVK1eQkZGRVaAgoEyZMvj0008xadIkODk5GbNc2TAUExEREZkvo06fGDVqFFavXg2NRgMAaNasGYYOHYp+/fqhUqVKBh8nPT0dx44dwx9//IEtW7YgISEBn332GRYtWoRVq1ahffv2xiybiIiISHZBQUGYO3cuQkND4eXlpXQ5Ns+oLdlWrlwJe3t7jB07Fjdv3sT58+cxZcqUQgViAHB0dESXLl0QHByMuLg4rFq1CrVr10ZUVBQOHz5szJKJiIiIZKftMhEXF4datWohISFB6ZJsnlFHit9991189tln0p/tjcHJyQnDhg3D0KFDsWHDBmRmZhrt2ERERERyy912zdHREc7OzgpWRICRQ/HChQuNebgcBEHAwIEDTXZ8SxMTE6P3+YcPH8pUCRERERmKfYjNFxfvsFDGHI0nIiIi02MgNm9c5pmIiIjIxBiIzZ/NjhRreyEXR3BwMAIDA4tfTBFER0frff7hw4do1aqVTNUQERGRLgzElkH2UPzPP//g+PHjuHPnDl68eFHghXOCIGDZsmUyVWc52HeYiIjIMsydO1e6z0BsvmQLxTdu3MDo0aPx999/G7yPKIomC8U3btwo9jF8fHyMUAkRERFZs9DQUNSqVQuOjo4MxGZMllB8584dtG/fHomJidIKd6VKlYK7uztUKmWmNdepU0eR8xIREZFt8fLyQlhYGJydnRmIzZgsoXj69Ol4+vQpVCoVpk6diokTJ6JKlSpynJqIiIhIVgsXLkTbtm3RrFkz6TGuWGf+ZAnFBw8ehCAImDx5Mr7//ns5TklEREQkO+1FdQ4ODjhz5kyOYEzmTZa5C8+fPwcA9OvXT47TEREREckue5eJjIwMvPPOOwpXRIUhy0hxxYoVcfv2bdjb20YHuNu3b+PEiRM5HktKSpL+XbFiRY7n3njjDZQvX16u8oiIiMjIcrddK1++fJ4sQOZNlpTarVs33L59G2fPnkXLli3lOKWiTpw4gVGjRuX73OPHj/M8FxISwlBMRERkofILxOHh4byozsLIMn3i448/RqlSpTB37lw8efJEjlMSERERmRwDsfWQJRRXrlwZmzdvxpMnT9C2bVscOHBAjtMqJjAwEKIoGnzz9/dXumQiIiIqJAZi6yKI2sbBMoiIiEDbtm2RkJAADw8P1KhRAy4uLnr3EQQBhw4dkqlC6xETE4OKFSsCyFoSmivgERERGc/OnTsREBAgfcxAbPlkC8WnTp3C8OHDERUVBUNOKQiCtKJdQUtBU14MxURERKajVqvRpEkTXLt2jYHYSshyod3169fRrVs3pKSkQBRFODs7o2bNmoquaEdERERUVPb29rh8+TICAwOxePFiBmIrIEsonjVrFpKTk+Hk5ISgoCC88847cHZ2luPUREREREaRmJgId3d36WN7e3usWbNGuYLIqGQZpj158iQEQcDnn3+Od999l4GYiIiILEpQUBDKlCmDP/74Q+lSyERkCcVPnz4FkLVIBREREZEl0XaZ0Gg0GD58OHbv3q10SWQCsoRi7UVevGCOiIiILEnutmvlypXDq6++qmBFZCqyhGJty5Jjx47JcToiIiKiYmMfYtsiS0u2uLg4NGnSBGq1GufOnUOVKlVMfUqbx5ZsRERERcdAbHtkGSkuV64c9u3bh9KlS6N169ZYunQpEhMT5Tg1ERERUaEwENsmWUaKq1WrBgBISUlBfHw8BEGAIAjw8vIyaEW7iIgIU5dodThSTEREVHgMxLZLlj7FUVFROT4WRRGiKCI+Pr7AfQVBMFFVRERERDlduHBBus9AbFtkCcUjR46U4zRERERExbJ27Vqo1WocP36cgdjGyDJ9guTH6RNERERFp9FooFLJcukVmQl+tYmIiMhmBQUF4ZNPPsnzOAOx7ZFl+gQRERGRucl9Ud3cuXMVrIaUptj0ibi4OISGhuLJkycAAE9PTzRo0ADlypVTohyrw+kTREREuuUOxBUqVMC9e/c4QmzDZB0pFkURS5YswcKFC3H9+vV8t6lXrx4mTZqEsWPHsvMEERERGV1+bddu3rzJQGzjZBspfvr0KXr27IlTp04ByArI+Rb0vyDctm1b7NixA+7u7nKUZ3U4UkxERJQX+xCTLrKMFIuiiF69euHkyZMAgDJlymDgwIFo3bo1ypcvDwCIjY3F2bNnsX79eiQkJODUqVPo1asXjh49KkeJREREZOUYiEkfWUaK//jjDwwfPhyCIGDIkCFYtGgRSpUqle+2SUlJeO+997B69WoIgoA1a9bg7bffNnWJVocjxURERP9iIKaCyDJ5Zu3atQCAjh07YvXq1ToDMQCULFkSK1euRMeOHSGKItasWSNHiURERGSlHjx4kKPtGgMx5UeWUHzx4kUIgoD333/f4H0mTZoEALh06ZKpyiIiIiIb4Ovri++++w4AAzHpJsucYm3btapVqxq8j3Zb7b5ERERERfWf//wHvr6+6Nu3LwMx5UuWkWI3NzcAWX++MNTDhw8BAKVLlzZJTURERGS9Tpw4keexESNGMBCTTrKE4gYNGgAAgoODDd5Hu612XyIiIiJDBAUFoUOHDujcubPSpZAFkSUU9+/fH6IoYsuWLZg5c6bOHsVa33zzDTZt2gRBEDBgwAA5SiQiIiIrkL3LxOHDhzFlyhSFKyJLIUtLtoyMDDRq1Ai3bt2CIAioX78+AgMD0bp1a3h7e0MQBMTFxeHvv//GypUrERoaClEUUbduXfzzzz+wt5d14T2rwJZsRERka9h2jYpDthXtoqKi0LlzZ0RGRha4fLMoiqhWrRoOHz6MSpUqyVGe1WEoJiIiW8JATMUl2yLfVapUwZUrV/Dxxx/Dzc0Noijme3Nzc8PUqVNx+fJlBmIiIiIqEAMxGYNsI8XZpaen48KFCwgNDZVarnl6eqJBgwZo3rw5HB0d5S7J6nCkmIiIbAEDMRmLIqGYTI+hmIiIrN38+fNzXEjHQEzFIcsVbKtWrQIA9O7d2+C+w0lJSdi8eTOArL6CRERERNnVrl0bKpUKGo2GgZiKTZaRYpVKBUEQcPXqVdSrV8+gfSIiIlCzZk2oVCqo1WoTV2h9OFJMRES2YM+ePZgyZQrOnz/PQEzFItuFdkXF2R1ERESky5tvvombN28yEFOxmW0ozszMBAD2KCYiIiIAWRfV1apVC6mpqUqXQlbIbEPxrVu3AGR1pSAiIiLbpu0yER4ejtq1azMYk9GZZBj22LFj+T5+7tw5JCQk6N03LS0NERER+OGHHyAIApo0aWKCComIiMhS5G67lp6ezuuNyOhMEor9/f3zrFoniiLeeecdg48hiiIEQcD48eONXR4RERFZCPYhJrmYbPpE9lXq8nusoJufnx9++eUX9O7d21QlEhERkRljICY5mWSkOCQkRLoviiI6deoEQRCwbNkyVK1aVed+giDA2dkZPj4+UjsxIiIisj0MxCQ3k4Tijh075vt4q1atDO5TTERERLaJgZiUIEu/s8jISABAhQoV5DgdERERWSiNRoOvv/5a+piBmOQiSyiuXLmyHKchIiIiC6dSqXDx4kU0bNgQbm5uDMQkG66MQURERGalevXquHbtGsqWLctATLKRPRS/ePECBw8exD///IOEhAS8fPlS71LO2gv0iIiIyDotWbIE3bp1y/GXZX0X5hOZgmyhWKPR4JtvvkFQUBCSk5MN2kfbq5ihmIiIyDppL6pzdXXFtWvXOOWSFCNbKA4MDMQff/wBURRhZ2eHMmXKID4+HoIgwM/PD0+fPkVSUhKArNFhLy8vuLi4yFUeERERySx7l4nk5GS8/fbbOHXqlMJVka0y2eId2e3btw9r1qwBkBWO4+PjcfDgQen5u3fv4vnz57hx4wY++OADqFQqeHh4YM+ePVLnCiIiIrIe+bVd279/v4IVka2TJRQHBwcDAOrXr4/ly5fDw8MjzzLQAFC7dm3Mnz8fmzdvRkREBLp3745nz57JUSIRERHJhH2IyRzJEorPnDkDQRDw3nvvGbR9QEAARo4cibt37+Lnn382cXVEREQkFwZiMleyhOL4+HgAQK1ataTH7OzspPtpaWl59unfvz9EUcSWLVtMXyARERGZHAMxmTNZQrGWp6endL9UqVLSfW1ozs7b2xsAEBUVZfK6iIiIyLT++usvBmIya7KE4nLlygEAnjx5kuMxR0dHAMCVK1fy7HP37l0AQGpqqgwVEhERkSkFBATA19cXAAMxmSdZQnHDhg0BANevX5ces7e3R9OmTQH8eyFedr/++isALhFNRERkDVxcXBAeHo4ePXowEJNZkiUU+/v7QxTFHG3YAGDYsGHSvOGRI0di165dWL9+PXr06IGDBw9CEAT06tVLjhKJiIjIyHL/tdfFxQU7d+5kICazJIj61lg2ksjISFSvXh1OTk6IioqSplOo1Wq0adMGFy9ezNOiTRRFVK5cGRcvXoSHh4epS7Q6MTExqFixIgAgOjoafn5+CldERES2JCgoCNOmTcOePXvQuXNnpcshKpAsI8VVq1bFnTt3EBoaitKlS0uP29vb48CBAxg6dCjs7e0hiiK0Gb1Hjx44fvw4AzEREZGF0XaZyMjIQLdu3fD3338rXRJRgWQZKTbEixcvEB4eDrVajRo1auToVEGFx5FiIiJSAtuukaWyV7oArVKlSqFZs2ZKl0FERERFxEBMlkzWPsVERERknRiIydIxFBMREVGxMBCTNWAoJiIioiJjICZrwVBMRERERbZr1y7pPgMxWTKGYiIiIiqygwcPon379gzEZPHMpvsEERERWR6VSoWjR48iPT0dzs7OSpdDVGQcKSYiIiKDBQUFYf78+TkeU6lUDMRk8ThSTERERAbJfVHd5MmTlSuGyMiMPlL85MkTYx+SiIiIFJY7EOceLSaydEYPxeXKlUPHjh0xd+5c3Lx509iHJyIiIpnl13YtNDRUwYqIjE8QRVE05gFVqqycLQgCAKBatWp46623EBAQgI4dO8LOzs6YpyMdYmJiULFiRQBAdHQ0/Pz8FK6IiIgsEfsQk60weig+ffo0duzYgR07duDatWtZJ/lfQC5dujS6du2KgIAAdO/eHZ6ensY8NWXDUExERMXFQEy2xOihOLuoqCjs2LEDO3fulNq1AFkhWaVS4ZVXXpFGkevWrWuqMmwSQzERERUHAzHZGpOG4uySkpKwb98+7NixA3v27MGjR4+yCvjfKHLVqlUREBDAaRZGwlBMRERFdevWLdSpU0f6mIGYbIFsoTg7URRx5swZndMsSpUqhW7dulnsNAvtCPmRI0dw5coV3L9/HxqNBl5eXmjRogUGDx6M/v37w97edB3xGIqJiKg4Jk2ahIULFzIQk81QJBTndvfuXSkg5zfNok2bNujZsycGDx4sBT1z9dVXX2H27Nko6NPasmVLbNy4EZUqVTJJHQzFRERUXPPmzcO4ceMYiMkmmEUozk47zWLnzp3YvXt3jmkWM2bMwPTp0xWuUL8xY8Zg2bJlcHV1RZ8+fdC5c2fUrFkTzs7OuHHjBn7++WecO3cOAFCzZk1cvHjRJG82DMVERFQYoaGhaNCggdJlECnG7JZ5LlmyJPr164fg4GDExsbi5MmT+Oyzz1C/fn1peoU5K1OmDL7//ns8fPgQq1evRmBgINq1a4fmzZtj2LBhOH36NAYOHAgACA8Px7x58xSumIiIbF1QUBAaNmyIkSNHKl0KkWLMbqRYn4yMDDg4OChdRrE9fvwYvr6+SE9PR8OGDXHlyhWjn4MjxUREZIjcXSa+/fZbfPHFFwpWRKQMsxsp1scaAjGQNZrcqFEjAEBERITC1RARka3Kr+3ahx9+qGBFRMqxqFBsTdLS0gCAreeIiEgR7ENMlBNDsQLi4+Nx48YNAOCiJUREJDsGYqK8TNcol3SaO3cu1Go1AEgX3RVWTEyM3ucfPnxYpOMSEZF1YyAmyp9FXWhnDf7++2+0b98earUafn5+uHXrFlxcXAp9nMJ04uCFdkREBDAQE+nD6RMyiouLQ//+/aFWqyEIAlauXFmkQExERFQU7u7u0n0GYqKcbHb6hDF6HgcHByMwMNCgbV+8eIEePXpI0x7mzJmDTp06Ffnc0dHRep9/+PAhWrVqVeTjExGR9Rk9ejQAYPbs2bhy5QoDMVE2NhuK5ZSamopevXrhwoULAICpU6fi008/LdYxOR2CiIiKYvTo0VI4JqJ/GT0UT5kyBSNHjkSTJk2MfWij0nZ/KA4fH58Ct1Gr1Rg4cCBCQkIAZC0DPXfu3GKfm4iIqCBBQUFYv349Tp8+DZWKMyaJ9DH6hXYqlQqCIKB+/foYMWIEhg4dalB4tEYajQZDhw7FunXrAACDBg3C2rVrZXlj4op2RES2LftFdU2aNMGFCxcYjIn0MMn/DlEUce3aNXz22WeoVKkSunXrhrVr1+Lly5emOJ3ZGj9+vBSIAwICsGbNGr4hERGRyeXuMhEbG4vU1FQFKyIyf0ZPaPv27cOwYcPg4uICURSRmZmJgwcPYvjw4ShfvjzeeecdaSqBNfvoo4/w+++/AwA6d+6MDRs2wN6eU7iJiMi0dLVdY7cjIv1M1qc4JSUFmzdvxurVq3Ho0CFoNJqsE/6v64Ofnx+GDRuG4cOHo06dOqYoQTEzZ87ErFmzAABt27bF/v374erqKmsNnD5BRGR72IeYqOhkWbzj4cOH+OOPP7BmzRpcuXLl35P/LyA3b94cI0eOxODBg1GmTBlTl2NSCxYswAcffAAAqFChAv766y+4ubnp3ad27dpwcHAwah0MxUREtoWBmKh4ZF/R7urVq1i1ahX+/PNPPHjwIKuI/4VjBwcHvPHGGxgxYgQCAgKMHhTl4O/vj6NHjxZqn8jISFSpUsWodTAUExHZDgZiouJTbJlnURRx6NAhrF69Gps3b0ZycnJWQf8LyB4eHhg0aBCGDx+ONm3aKFFikTAUExGRnNLT0+Hm5iZdSMdATFQ0ioXi7LLPPz58+DAyMzOl51QqFdRqtYLVWSaGYiIi2/H333+jffv28PLyYiAmKiKzCMXZXbt2DYMHD8b169chiiIEQcgRkskwDMVERLbl8uXLqFGjBgMxURGZRdPcjIwMbN68GX379kXz5s1x/fp1pUsiIiIyW2vWrEFiYmKOx5o0acJATFQMijbOPXnyJFavXo0NGzZI/7m1A9elSpVC//79MXLkSAUrJCIiMi/ai+q0UyXc3d2VLonIKsgeisPDw7F69Wr88ccfiIqKAvBvELazs0OXLl0wYsQI9OnTB87OznKXR0REZLayd5lISEjAwIEDsX//foWrIrIOsoTihIQErFu3DqtXr8b58+cB/BuEAaBhw4YYMWIEhg4divLly8tREhERkUXJr+3a5s2bFayIyLqYLBSnpaVh27ZtWLNmDfbt2yd1kNCG4XLlymHIkCEYMWIEGjdubKoyiIiILB77EBOZntFD8ZEjR7BmzRps2rQJz58/B/BvEHZ2dkbPnj0xYsQIdOvWDXZ2dsY+PRERkVVhICaSh9FDcadOnSAIghSEBUFA+/btMWLECAwcOBClS5c29imJiIisEgMxkXxMMn1CFEVUr14dw4cPx/Dhw1G1alVTnIaIiMhqLVu2jIGYSEZGD8Xjxo3DiBEj0LZtW2MfmoiIyGYEBATAzc0Nz549YyAmkoHZrWhHxsEV7YiILF98fDwGDBiAXbt2MRATmZgii3dERETg9OnTiI2NRUpKCt599114eXkpUQoREZHZUKvVsLf/90ezt7c3jh49qmBFRLZD1mWeL168iFdffRW1atXCyJEj8dlnn2HWrFmIj4/Psd0vv/wCb29v1KxZExkZGXKWSEREpIigoCC4ubkhNDRU6VKIbJJsoXjnzp1o164dTp48CVEUpVt+RowYgZcvX+LOnTvYuXOnXCUSEREpQttlIiUlBc2bN8etW7eULonI5sgSih8+fIi3334baWlpqFevHvbs2YMXL17o3L5UqVLo2bMnAGDPnj1ylEhERKSI3G3XPD09UaFCBQUrIrJNsoTiH3/8EcnJyahcuTKOHz+Obt26wdXVVe8+/v7+EEURFy5ckKNEIiIi2bEPMZH5kCUU7927F4Ig4OOPP4a7u7tB+9SpUwcAEBkZacLKiIiIlMFATGReZAnFd+/eBQC0atXK4H20K98lJSWZpCYiIiKlMBATmR9ZQrFarQYAaDQag/d59uwZAPANgoiIrAoDMZF5kiUUly9fHgBw584dg/c5e/YsAKBSpUomqYmIiEgJK1eulO4zEBOZD1lCcYcOHSCKIjZs2GDQ9unp6fjtt98gCAL8/f1NWxwREZGMLl68iFq1ajEQE5kZWUJxYGAgAGD79u04cOCA3m3T09MxYsQIREREQBAEjB07VoYKiYiI5GFvb49r164xEBOZGVlCsb+/PwYNGgRRFBEQEIDPPvtMmh4BAFFRUTh16hTmzp2L+vXrY8OGDRAEARMmTED9+vXlKJGIiMgk5s2bh/Xr1+d4zN7enoGYyMwIoq5l5YwsLS0N/fr1w+7duyEIgs7ttOX07dsXf/31F+zs7OQoz+rExMSgYsWKAIDo6Gj4+fkpXBERke3RXlQnCALWrVuHgQMHKl0SEekg2zLPTk5O2LlzJ3777TdUq1Ytx1LP2W9+fn5YtGgRNm7cyEBMREQWK3uXCVEU8cUXXyhcERHpI9tIcW7Xr1/H+fPnER8fj8zMTJQpUwZNmzZFs2bN9I4kk2E4UkxEpBy2XSOyPPZKnbhevXqoV6+eUqcnIiIyCQZiIssk2/QJIiIia8dATGS5GIqJiIiMgIGYyLIZNRR/8MEHePjwoTEPmcPGjRuxbt06kx2fiIioKM6fP89ATGThjBqKFy5ciGrVquH9998v1JLO+mRkZODPP/9Ew4YNMWjQIISFhRnluERERMbSokUL9O7dGwADMZGlMmooHjZsGNLT0/Hrr7+iZs2aaNu2LRYtWoTY2NhCHScjIwOHDx/GmDFjUK5cOQwbNgzXrl1D1apV0blzZ2OWTEREZBRbtmzBtGnTGIiJLJTRW7KdPXsWX375JQ4ePJh1gv+1V6tYsSJatmyJpk2bwtvbGx4eHvDw8MDLly/x5MkTPH36FGFhYTh37hyuXLmC9PR0AFm9HcuWLYuvvvoKEyZMgL29Yg0zLApbshERmdbdu3dRuXJlpcsgIiMxWZ/ic+fOYf78+di8eTPS0tKyTmZA/+Hs5TRv3hzjxo3DkCFD4OrqaooyrRZDMRGR6Wgvqps2bRq+++47pcshIiMw+eIdz58/x7Zt2xASEoLjx48jIiJC57YuLi5o06YNOnTogF69eqFJkyamLM2qMRQTEZlG7i4Tixcvxvjx4xWsiIiMQfYV7R49eoSYmBg8evQIT548gbOzM8qWLYuyZcuiWrVqnB5hJAzFRETGx7ZrRNZL9gSqDcBERESWhIGYyLpx8Q4iIqICMBATWT+GYiIiIj0YiIlsA0MxERGRDgzERLaDoZiIiEiH5ORk6T4DMZF1Y6sHIiIiHaZPnw4AWLp0KW7cuMFATGTFZG/JRvJgSzYiIiIiw3H6BBER0f8EBQUhICBA6TKISAGcPkFERIScF9W9+eab2LNnj8IVEZGcOFJMREQ2L3eXicuXL0OtVitYERHJjaGYiIhsmq62a/b2/GMqkS2RJRT/8MMPiI+Pl+NUREREBmMfYiLSkiUUf/rpp6hYsSL69OmDHTt2QKPRyHFaIiIinRiIiSg72aZPZGRkYPv27ejduzcqVKiAzz77DDdv3pTr9ERERBIGYiLKTZY+xdeuXcOyZcvwxx9/4NGjR1knFgQAQOvWrTF69GgMGjSIb0ZGxD7FRET5S0pKgoeHh3QhHQMxEQEyL96hVquxc+dOBAcHY8+ePVCr1VI4dnFxQf/+/TFq1Ci8+uqrcpVktRiKiYh027ZtG/r06YNy5coxEBMRAAVXtIuPj8eqVauwYsUKXL9+PauY/wXk6tWrY9SoURg5ciR8fX2VKM/iMRQTEel35MgRtGjRgoGYiACYyTLPZ8+exfLly/HXX3/h2bNnALICskqlwuuvv47Ro0ejZ8+ecHBwULhSy8FQTET0r02bNiEgIACOjo5Kl0JEZsos+hS3atUKixcvxsOHD7Fq1SqUL18eoigiMzMT+/btw8CBA1GhQgX85z//QWxsrNLlEhGRBQkKCkL//v1Rt25dpKenK10OEZkpswjFAHD37l18//33mD59OuLi4qSpFKIoQhRFJCQkYO7cuahevTp+/PFHhaslIiJLkL3LxJ07dzBkyBCFKyIic6VoKE5NTcWaNWvQuXNnVK9eHV9//TWioqIgiiJq1qyJ77//Hg8ePMD+/fsxaNAg2NnZ4eXLl5g6dSrWrFmjZOlERGTm8mu7tmLFCuUKIiKzpsic4tOnTyM4OBjr16/HixcvAGSNCJcoUQL9+/fHmDFj0KFDhzz7RUREoH///vjnn3/QtGlTXLhwQe7SLQbnFBORLWMfYiIqLNkWdtfOF16xYgXCwsIAZAVhAGjatCnGjBmDoUOHonTp0jqPUb16dXz//fd44403pGMQERFlx0BMREUhSyju3r07Dhw4AI1GIwVhNzc3DBkyBGPGjEHTpk0NPla1atUAACkpKSaplYiILBcDMREVlSyheO/evdL9Dh06YMyYMRgwYACcnZ0LfSwXFxe8+uqr0oV4REREAPDrr78yEBNRkckSir29vTFy5EiMGTMGNWvWLNaxfH19ceTIEeMURkREVqNTp05wdnZGamoqAzERFZosoTgmJgb29rJNXyYiIhtUu3ZtXL58GUOHDsWRI0cYiImoUGRJqgzERERkChqNBirVv91Fa9eujfPnzytYERFZKrNZvIOIiKgwgoKCULZsWcTExChdChFZAVmGcL/++utC7yMIApydneHm5oaaNWuiefPmetu1ERGR7cjeZaJevXq4efMmfH19Fa6KiCyZLKF45syZxe4W4eDggF69emH27NmoUaOGkSojIiJLk7vtmqurKwdNiKjYZJs+IYqi1KNYe1/XLb9t0tPTsXHjRjRp0gSHDh2Sq2wiIjIj7ENMRKYiSyjWaDSIiopC69atIYoi+vTpgy1btiA6OhqpqalITU1FdHQ0tmzZgt69e0MURbRu3RoRERF4+vQpjh8/jokTJ0KlUiElJQX9+/fH48eP5SidiIjMBAMxEZmSIGqHZk3oxYsXaNmyJe7cuYM///wT/fr107v9pk2bMHjwYFSpUgXnz5+Hm5sbAGDfvn146623oNFoMGPGDEyfPt3UpVusmJgYVKxYEQAQHR0NPz8/hSsiIio6BmIiMjVZRornz5+PsLAwTJw4scBADAD9+vXDhAkTEBERgaCgIOnxbt26YejQoRBFEXv27DFlyUREZCYYiIlIDrKE4g0bNkAQBPTp08fgfbThefPmzTke79WrFwDg9u3bxiuQiIjM1s8//yzdZyAmIlORpftEZGQkABTq6mDttnfv3s3xeOXKlQEAz58/N1J1RERkzq5du4YaNWpAEAQGYiIyGVlGih0cHAAAoaGhBu+j3Va7r5ZGowEAuLu7G6c4IiIyayVLlsTt27cZiInIpGQJxY0aNYIoivjhhx+QlpZW4PapqamYO3cuBEFAw4YNczwXEREBAChbtqxJajWGXbt2YebMmejRowfq1q0LLy8vODg4wMPDA82bN8fHH3+MW7duKV0mEZFZ+umnn3DixIkcj5UsWZKBmIhMSpZQ/M477wDI+hNYly5dcPPmTZ3b3rhxA126dMG1a9cAAKNHj87x/MGDByEIAho3bmy6gotBrVbjrbfewqxZs7B7927cvHkTjx8/hlqtRmJiIi5evIh58+ahYcOGmDNnjtLlEhGZlaCgIEyePBn+/v55gjERkSnJ0pINAHr37o3t27dLK9s1bdoUzZs3l0Z8Hz16hAsXLuDSpUsAshbvCAgIwLZt26RjPHv2DJUrV8bz58+xcuVKDB8+XI7SC0WtVsPLywv+/v5o3bo1qlWrBh8fH7i4uODBgwc4cuQIli9fjmfPngEAfv31V0yYMMHodbAlGxFZmtxdJurXr1+oaXdERMUhWyhWq9X44IMP8Ntvv0EURZ3LPmufGzt2LBYsWJBjTvHjx4+lN8gWLVrA1dVVjtILLTMzE3Z2djqfj4yMRPPmzfH06VOULVsWDx8+1Lt9UTAUE5ElYds1IlKabKFY6/Lly1iyZAkOHjyYp61a9erV0blzZ4wbNw7NmjWTsyzZTZgwAb/99huArIsK69evb9TjMxQTkaVgICYicyBLS7bsmjRpgkWLFgEA0tLSkJiYCCCrm4STk5Pc5SimVKlS0v3U1FQFKyEiUg4DMRGZC1lCcadOnQAAw4cPx6hRo6THnZycUK5cOTlKMCsvX76U5kqrVCrUqlVL4YqIiOTHQExE5kSW7hPHjx/H0aNHUaVKFTlOZ5YyMjJw7949rFu3Dm3btkV4eDiArM4c2UeNiYhswaFDhxiIicisyDJS7O3tjdjYWJtbcCMqKgpVq1bV+Xy3bt0QFBRUpGPHxMToff7hw4dFOi4RkRxee+01tGrVCmfPnmUgJiKzIEsobty4MWJjYxEWFoamTZvKcUqz5uXlhV9++QX9+vUrctcJ7UV0RESWSKVS4fTp05gwYQLmzZvHQExEipOl+8TmzZvRv39/dOzYESEhIaY+ndnIyMiQVq5Tq9W4f/8+9u7di2XLlsHZ2RmffPIJpk2bVqRj62pplx92nyAic5CQkAAvLy+lyyAiypdsLdlGjBiBNWvWIDAwEAsWLFC8x3BhQqUuwcHBCAwMLPR+V65cwWuvvYYnT55g1KhRWL58eaGPYcj0iVatWgFgKCYi5QUFBeGTTz7BwoUL8e677ypdDhFRHrKE4lWrVkEURfz444+4evUq3N3dERAQgEaNGsHDw6PAKQQjRowwek1KhmIgayU77Q+Gffv2oWvXrsWuJzv2KSYic5G7y8SGDRvQv39/BSsiIspLllCsUqlyhFB9K9rlJggC1Gq10Wu6efNmsY/h4+MDNze3Iu374MEDVKhQAQAwduxYLFmypNj1ZMdQTETmgG3XiMhSyLZ4R+7sLfNCennUqVNH0fOXLVtWun/37l0FKyEiMg0GYiKyJLKE4sjISDlOY1Hu378v3ecPCCKyNgzERGRpZAnFlStXluM0FmXDhg3S/YYNGypYCRGRcTEQE5ElkmVFO1uydevWAhfOOHbsGL7++msAgL29Pd5++205SiMiMjkGYiKyVLLNKbYVW7duxaBBg9CjRw907twZ9evXh7u7O9LS0hAREYEdO3Zg/fr10Gg0AIDp06ejdu3aCldNRGQc2iXsAQZiIrIssofi8PBwrFq1CqdPn0ZsbCxevnyJffv2oUaNGtI2oaGhuHfvHlxdXdGxY0e5Syy29PR0bNmyBVu2bNG5TYkSJfDtt9/io48+krEyIiLTWrx4MTQaDXbu3ImwsDAGYiKyGLKFYo1Gg08//RQ//fQTNBqN1H1CEASkp6fn2PbevXt46623YG9vj8jISKl1mSX4v//7P3Ts2BHHjh1DaGgo4uLiEB8fD5VKBU9PT9SvXx+dOnXCiBEj4OPjo3S5RERGt2TJEmg0GqhUnKFHRJZDthXtxo4di+XLl0MURVSoUAGvvPIKNm7cCEEQcPXqVdSrVy/H9tWrV0dUVBTmzZuHDz/8UI4SrQr7FBORHIKCgnDr1i2j91onIpKbLL/GHzp0CMuWLQMAfP7554iKisL69ev17jNgwACIoojDhw/LUSIRERWS9qK6pUuXYuzYsUqXQ0RULLJMn9COIHTv3h3ffvutQfu0atUKAHDt2jWT1UVEREWTu8vErl27OGWCiCyaLO9ep0+fhiAIGD16tMH7aP/cHxsba6qyiIioCPJruxYWFsZATEQWTZZ3sPj4eABAlSpVDN7HwcEBAKBWq01REhERFQH7EBORtZIlFLu6ugIAHj16ZPA+MTExAABPT0+T1ERERIXDQExE1kyWUFytWjUAwPXr1w3eZ8+ePQCA+vXrm6QmIiIyHAMxEVk7WUJx165dIYoifvnlF2klN32uX7+OFStWQBAEdO/eXYYKiYhIl4SEBHzyySfSxwzERGSNZAnFH3zwAVxdXREREYEJEybonSd84MABdO3aFampqfD09GSbHyIihXl5eeGXX34BwEBMRNZLlpZs5cqVw+LFizFixAgsW7YM+/btQ48ePaTnf/rpJ4iiiJMnT+LmzZsQRREqlQorVqzgGy8RkRmYOHEivL290a1bN74vE5FVkm1FOwBYv349xo8fj2fPnkEQhDzPa0spWbIkVq5ciT59+shVmtXhinZEVByHDh3Ca6+9xjZrRGQzZH23GzhwIG7fvo1Zs2ahefPmsLOzgyiK0q1+/fqYNm0abt++zUBMRKSQoKAgdOnSBW3atDHoOhAiImsg60hxbhqNBk+ePEFmZiY8PT2l3sRUfBwpJqKiyN1lYsyYMVi6dKmCFRERyUOWOcW6qFQqeHl5KVkCERH9T35t13788UcFKyIikg8nixEREfsQE5HNYygmIrJxDMRERDKH4hs3bmDKlClo0aKFNIfYzs5O783eXtEZHkREVo2BmIgoi2yJc968eZg2bRrUajUUvLaPiIj+56effmIgJiL6H1lC8d69e6U3XkEQ0KZNGzRv3hyenp7sgUlEpBBta8zMzEwGYiKyebKE4vnz5wMAPDw8sH37drRr106O0xIRkR7t27fHkSNHMGHCBJw5c4aBmIhsmiyh+Pz58xAEAdOnT2cgJiIyI+3bt0doaKjSZRARKU6WuQspKSkAst58iYhIGUFBQahUqRKeP3+udClERGZHllBcoUIFAEB6erocpyMioly0XSaio6NRq1YtBmMiolxkCcUBAQEAgJMnT8pxOiIiyiZ32zVBEHiRMxFRLoIoQ3+0Bw8eoHHjxrC3t8elS5dQvnx5U5/S5sXExKBixYoAgOjoaPj5+SlcEREpgX2IiYgMI8tQga+vL7Zt24bMzEy0bdsWu3fvluO0REQ2jYGYiMhwsnSf6NSpEwDA09MTYWFhCAgIgLu7O2rWrAkXFxe9+wqCgEOHDslRJhGR1WAgJiIqHFmmT6hUKgiCAAAGr2YnCAJEUYQgCMjMzDRleVaJ0yeIbBcDMRFR4ckyUvzqq69KoZiIiExHo9Hgu+++kz5mICYiMowsofjIkSNynIaIyOapVCpcvXoVderUgaurKwMxEZGBZAnFREQkH19fX9y8eROlS5dmICYiMhAbVRIRWbhff/0VN27cyPGYr68vAzERUSEwFBMRWbCgoCC8++67aNasWZ5gTEREhjN6KO7bty/69euHmJiYfJ9PSUnBsWPHcOzYMb3HuXnzJjw9PVGmTBljl0hEZBWyd5lITU3F8OHDFa6IiMhyGX1O8datWyEIAr755pt8n4+MjIS/vz9UKhXUarXO42RmZiIxMZFdK4iI8pFf2zVe1ExEVHSKTZ+QoT0yEZFVYh9iIiLj45xiIiILwkBMRGQaDMVERBaCgZiIyHQYiomILMCmTZsYiImITIihmIjIAgQEBKBatWoAGIiJiEyBoZiIyAI4Ojrixo0b6NevHwMxEZEJMBQTEZmppKSkHB87Ojpi48aNDMRERCbAUExEZIaCgoLg4eGBbdu2KV0KEZFNMPriHVpffvkl3N3d8zyemJgo3X/nnXd07p99OyIiW5K9y0SfPn1w8OBBdOrUSeGqiIismyAaeRUNlUpltFXoRFGEIAjIzMw0yvFsSUxMDCpWrAgAiI6Ohp+fn8IVEZEh2HaNiEgZJhkp5mp1RESFx0BMRKQco4fiyMhIYx+SiMjqMRATESnL6KG4cuXKxj4kEZFVYyAmIlIeu08QESmIgZiIyDwwFBMRKejYsWPSfQZiIiLlMBQTESlo27ZtePPNNxmIiYgUZrI+xUREZJjdu3dDrVbD3p5vyURESuFIMRGRjIKCgvD111/neZyBmIhIWXwXJiKSSe6L6qZPn65gNURElB1HiomIZJA7EC9dulTBaoiIKDeGYiIiE8sdiMuVK4cbN24oWBEREeXGUExEZEL5BeLbt2+zywQRkZlhKCYiMhEGYiIiy8FQTERkAgzERESWhaGYiMjI7t69y0BMRGRhjNqSrVOnTsY8HABAEAQcOnTI6MclIjKVypUr4/PPP8d3333HQExEZCGMGoqPHDkCQRAgiqLObQRByPGxdltDHycisgSzZ89GpUqVMHToUAZiIiILYNRQ/Oqrr+oNsQ8ePEB4eDiArLBbpUoVlCtXDgAQFxeHqKgoiKIIQRBQs2ZN+Pr6GrM8IiKTOX/+PFq0aJHjsfHjxytUDRERFZYg6hvWNaI9e/Zg6NCh0Gg0+OKLLzBq1Ch4eXnl2CYhIQHBwcH47rvvIAgC/vjjD7z55ptylGd1YmJiULFiRQBAdHQ0/Pz8FK6IyHppL6rr3bs3tmzZonQ5RERUBLKE4rCwMDRv3hz29vY4ceIE6tevr3f769evo127dsjMzMT58+dRq1YtU5dodRiKieSRu8vEtGnT8N133ylYERERFYUs3SeCgoKQnJyMTz/9tMBADAD16tXDp59+iqSkJPzwww8yVEhEVHj5tV37/PPPFayIiIiKSpZQfODAAQiCUKjuFK+99hoA4ODBg6Yqi4ioyNiHmIjIusgSih8+fFjofbQX7MXGxhq7HCKiYmEgJiKyPrKEYnd3dwDA0aNHDd7nyJEjAAA3NzcTVEREVDQMxERE1kmWUNyhQweIoog5c+YgLCyswO3DwsLw/fffQxAEtG/fXoYKiYgKNm/ePAZiIiIrJUso/uijj6BSqfDs2TO0adMG8+fPx5MnT/Js9/TpU/z0009o27YtEhMTIQgCPv74YzlKJCIqUKVKlaSpXQzERETWRbY+xT/++CM+/vhj6QeKIAioWrUqvL29IQgC4uLiEBkZCVEUpdXsfvjhB3z00UdylGd12JKNyDQ2btyIadOm4dKlSwzERERWRLZQDABbtmzBpEmT8ODBg38L+F9Izl6Gj48PFixYgL59+8pVmtVhKCYiIiIynKyhGAAyMjKwbds2HDx4EFevXpWmUXh4eKBhw4bo0qULevfuDQcHBznLsjoMxUTFFxQUhJUrV+LixYuwt7dXuhwiIjIh2UMxyYOhmKh4sneZqFWrFq5du8ZgTERkxWS50I6IyJLkbrv27NkzpKamKlgRERGZmmKhWKPRICEhAffu3UNmZqZSZchqz549EARBus2cOVPpkogoF/YhJiKyTbKG4szMTCxbtgwdOnSAi4sLypUrh2rVquHWrVs5ttu5cyc+/fRTzJ49W87yTCo5ORkTJ05Uugwi0oOBmIjIdsk2QS4+Ph69e/fG33//jYKmMVepUgU9e/aEIAjo0aMHmjRpIk+RJvTVV1/h7t278Pb2Rnx8vNLlEFEuDMRERLZNlpHizMxMBAQE4MyZMxAEAQMHDsTChQt1bt+gQQO0bt0aQFYbN0t34cIF/Pzzz3BycrKq0W8ia8FATEREsoTilStX4ty5c3BwcMCuXbuwbt06vPvuu3r36dmzJ0RRxIkTJ+Qo0WQyMzMxduxYZGZm4vPPP0eNGjWULomIslGr1Zg+fbr0MQMxEZFtkiUU//nnnxAEAePHj0e3bt0M2qdp06YAkGe+saX58ccfcenSJdSqVQufffaZ0uUQUS729vb4+++/4eTkxEBMRGTDZJlTfOXKFQBZo7+G8vb2BgA8fvzYJDXJISoqCjNmzAAA/Prrr3ByclK4IiLKT4MGDfDPP/+gQoUKDMRERDZKllCcmJgIAChTpozB+2jbtNnZ2ZmiJFlMnDgRKSkpGDp0KDp16mTUY8fExOh9/uHDh0Y9H5E1WbZsGQICAqRfvgGgdu3aClZERERKkyUUe3p6Ij4+HtHR0dK0iIKEh4cDAMqWLWvK0kxm7dq12Lt3L9zd3TFv3jyjH1+7Wh0RFY72ojo3NzeEhYXlCMZERGS7ZJlTXL9+fQDAuXPnDN7nr7/+giAIaNmypanKMpknT55gypQpAID//ve//KFLZCayd5l49uwZBgwYoHBFRERkLmQJxb1794Yoili4cCGePn1a4PYbN27Ejh07AAD9+vUzdXlGN3XqVMTHx6N169YYN26cSc4RHR2t93b27FmTnJfIUuXXdm3Xrl0KVkREROZEllA8duxYVKpUCc+fP0fXrl1x/fr1fLeLj4/HF198gSFDhkAQBDRo0AADBw40SU3Zl1su6m3FihV5jnvkyBEEBwfDzs4Oixcvhkplmk+xn5+f3puPj49JzktkidiHmIiICiLLnGInJyds27YN/v7+uHDhAho2bJjjopZhw4YhKSkJd+7cgSiKEEURZcqUwaZNmyAIghwlGkVaWhrGjx8PAPjggw+sYiU+IkvHQExERIaQbZnnxo0b49y5cxg5ciROnz6NmzdvSs/9888/OZZ+btWqFdauXYtq1aqZrJ4bN24U+xi5R2M3b96MsLAwODg4oF69eli3bl2efbKPkoeGhkrbtG7dGlWrVi12TUT0LwZiIiIylCBmT6MyOXHiBLZv347z588jPj4emZmZKFOmDJo2bYqePXvi9ddfl7sko1ixYgVGjRpVpH2Dg4MRGBhotFpiYmKkDhXR0dHw8/Mz2rGJLMGaNWswfPhw6WMGYiIi0ke2keLs2rdvj/bt2ytxaiKyEW+99RbKli2LR48eMRATEVGBZLnQzlYEBgZKc6J13UJCQqTtZ8yYIT1uzFFiIgLc3d0RFhaG119/nYGYiIgKJEsoVqlUsLe319l1Ij8RERHSfkREhkhPT8/xsbu7O/bv389ATEREBZJtpLioU5cVmPJMRBYoKCgIbm5u+Pvvv5UuhYiILJDZT5+wpJZsRKQMbZeJ1NRUtG/fHpcvX1a6JCIisjBmG4oTEhIAAK6urgpXQkTmLHfbtTJlyqBGjRoKVkRERJZI1gm7ho76JicnY8GCBQCA6tWrm7Ik2fn7+3NKCJGRsA8xEREZi0lCsa5FN7p27QoHBwe9+6alpSE+Ph4ajQaCICAgIMAUJRKRhWMgJiIiYzJJKI6KisrzmCiKuH//fqGO06ZNG3z66adGqoqIrAUDMRERGZtJQvHIkSNzfLxy5UoIgoCePXvC3d1d536CIMDZ2Rk+Pj5o27YtOnXqxAvtiCgHBmIiIjIFWZZ5VqlUEAQBV69eRb169Ux9OgKXeSbr1aZNG6ntGgMxEREZiywX2s2YMQMA4O3tLcfpiMiKnTp1Ci1atMCDBw8YiImIyGhkGSkm+XGkmKyZRqNBamoqXFxclC6FiIishNn2KSYiArLmEC9btizHYyqVioGYiIiMSpZQfOrUKdjZ2aFEiRIGdaC4f/8+nJ2dYW9vjwsXLshQIRGZI+1FdWPGjMkTjImIiIxJllC8bt06iKKIt956CxUqVChw+woVKiAgIAAajQZr166VoUIiMje5u0zMnj1bwWqIiMjayRKKT5w4AUEQ8Oabbxq8T48ePQAAx44dM1VZRGSm8mu7duXKFQUrIiIiaydLKI6IiACAQrVjq1OnDgDg9u3bJqmJiMwT+xATEZESZAnFqampAABnZ2eD93FycgIAJCcnm6QmIjI/DMRERKQUWUKxp6cnAODevXsG7xMTEwMAelfAIyLrwUBMRERKkiUUa6dNbN++3eB9tm7dCgCoXbu2KUoiIjMSGhrKQExERIqSJRR3794doihi1apVOH78eIHbHzt2DKtXr4YgCHjrrbdkqJCIlNSgQQOMHDkSAAMxEREpQ5ZQPH78eHh5eSEzMxPdu3fHwoULpXnG2aWmpuLnn39Gjx49oFar4eHhgYkTJ8pRIhEpbMWKFfj2228ZiImISBGyLfN88OBBdO/eHZmZmQAAV1dXNG/eHD4+PgCAhw8f4vz580hJSYEoirC3t8euXbvw+uuvy1Ge1eEyz2Tubt26xelRRERkNmRb5rlLly7Yt28ffHx8IIoikpKScOzYMfz111/466+/cOzYMSQnJ0MURVSoUAH79+9nICayUkFBQahTpw4mTZqkdClEREQAZBwp1kpLS8OqVauwc+dOXLp0CQkJCQAALy8vNGvWDAEBARg2bJjUko2KhiPFZK5yd5kICgrCRx99pGBFRERECoRikgdDMZkjtl0jIiJzJdv0CSKybQzERERkzhiKicjkGIiJiMjcMRQTkUkxEBMRkSWwN+bBqlWrBgAQBAERERF5Hi+K3MciIsvBQExERJbCqKE4KioKQFaQze/xosh9LCKyHPb2/77FMBATEZmXqKgoVK1aFQAQHByMwMBAZQtSmFFDsXaZVkMfJyLr9uGHHwIAfvzxR4SGhjIQE5HVyx40i4PNweRn1FAcHBxcqMeJyPp9+OGHUjgmIiIyV0YNxURk24KCgrBr1y4cPHgQKhWv4yUi21OhQgVcvXpV5/MNGzYEALRo0ULxQcMqVapwRDobhmIiMorsF9V17NgRR48eZTAmIpvj4OCABg0aFLidq6urQduRfPgTi4iKLXeXifDwcKSnpytYERERUeEYdaT42LFjxjyc5NVXXzXJcYmo+HS1XXN2dlawKiKyBFEPM7Dj+AuER2cgJVUDF2cValZ0QECHUqji46B0ebLz9/fH0aNH0bFjRxw5cgTh4eH46aefsG/fPty/fx8vX75EZGQkqlSpAgB4+PAhtmzZgsOHD+Off/7BgwcPoFar4eXlhRYtWmDIkCEYMGCAzr/aFdR9YubMmZg1axaArAv/UlNTsWDBAvz5558IDw8HANStWxcjRozAhAkTcnQcskRGrd7f39/oLdQEQYBarTbqMYnIONiHmIiK4mZUGn7bkoh/wtPyPBcakYYtR5LQuKYTxvdxR50qTgpUqLxt27Zh6NChSE5Ozvf5zMxM+Pn5QaPR5HnuwYMH2L59O7Zv345ly5Zh8+bNxX5fjouLwxtvvIHLly/nePzcuXM4d+4c9u/fj61bt1r0tDmjVy6KotFvRGR+GIiJqCj+vvYSH82PzzcQZ/dPeBo+mh+Pv6+9lKky83Hv3j0MGzYMLi4umDNnDk6ePIkzZ85gwYIF0nusNh916tQJc+fOxd69e3HhwgUcOXIEy5cvxyuvvAIAOHDgAN57771i19S3b19cv34dH3zwAQ4cOIALFy5g7dq1qFu3LgBgx44dWLp0abHPoySjjhSHhITofC49PR1ffvklzp07h7Jly2LgwIFo1aoVypUrByDrN5Bz585h/fr1iI+PR8uWLTF79mw4ONjen0+IzB0DMREVxc2oNMxckoC0DMMGvFLTRcxamoB5k71tasQ4MjISvr6+OH36NCpVqiQ93rp1a+m+nZ0dbt26hRo1auTZv2PHjhg1ahRmzJiBr7/+GqtXr8aXX36JmjVrFrkm7Wiwv7+/9FizZs3QrVs31KtXD3FxcVi0aBHGjx9f5HMozaihuGPHjvk+LooiunfvjvPnz2P06NGYP38+XF1d82w3fPhwzJkzB5MnT8bvv/+OefPmYffu3cYskYiKKTU1FdOmTZM+ZiAmIkP9tiXR4ECslZouYsmWRMybUs5EVZmnOXPm5AjEuQmCkG8gzm769OlYtGgREhISsH37dnz88cdFrmfSpEk5ArGWp6cnRo0ahTlz5uDq1at49uwZ3NzcinweJcky8WPZsmXYt28funTpgqVLl+YbiLVcXFywZMkSvP7669i3bx+WLFkiR4lEZCBnZ2fs3bsXdnZ2DMREZLCohxkFTpnQ5XJ4Gu4+zDByRebL0dERAwYMKNQ+Go0GDx48wK1btxAaGorQ0FDcuHEDfn5+AIB//vmnWDUNHTpU53PNmzcHkDUIGhkZWazzKEmWULxixQoIgoB3333X4H3ee+89iKKIlStXmrAyIiqKTp064eTJkwzERGSwHcdfFGv/7cXc35LUrFnToA4+oihizZo1eO2111CyZElUqFABderUQcOGDaWb9sK4hISEYtVUp04dnc95enpK91+8sNyvkyy9M27evAkAev8MkFvFihVz7EtEyvnrr78QEBAAFxcX6bHsc9uIiAoSHl28kd7bxdzfknh4eBS4TWpqKvr27Ys9e/YYdMyXL4t3wWL29//csnecyMzMLNZ5lCTLSHFqaioAIDo62uB9tNumpRXtTy1EZBxBQUEYPHgwatasiZSUFKXLISILlZKat3VYofZPK97+lsTOzq7AbWbPni0F4o4dO2L9+vW4ffs2kpKSkJmZKXXw6tChAwCwm5cBZAnF2ongixcvNngf7bbVq1c3SU1EVLDsXSYePHiAgQMHKlwREVkqF+fiRQ4XJ8vtf2tsoiji999/BwB06NABhw8fxoABA1C9enW4urrmGLl98uSJUmVaHFm+wwYOHAhRFLFv3z68++670shxftLS0vD+++9j7969EAQBgwcPlqNEIsolv7Zr69atU7AiIrJkNSsWr8VqjWLub02ePHmC2NhYANC7Yl1SUhJu3bolZ2kWTZY5xR999BHWrFmDmzdv4rfffsPWrVsxcOBAtGzZEt7e3hAEQepTvGHDBukLXbt2bXz00UdylEhE2bAPMREZW0CHUthyJKnI+/fsUMqI1Vi27Cv96lrxDgB+//13rgpcCLKEYmdnZ4SEhKBHjx64ePEiYmNjsWDBgny31c55adq0KXbu3AknJ9tp1k1kDhiIicgUqvg4oHFNpyK1ZWtS0wmVfThSrFW2bFm4u7sjMTERf/75J6ZMmZInL507dw5fffWVQhVaJtkm6JQrVw5///03FixYgHr16ulc0rlu3br4+eefcfbsWfj4+MhVHhGBgZiITGt8H3c4OwqF2sfZUcC4Pu6mKchCqVQqqW/wlStX0L59e/z55584f/48Dh06hI8//hivvvoqnJ2dUatWLYWrtRyyjBRr2dnZ4b333sN7772H2NhYXL16VZoA7uHhgYYNGzIIEylkyZIlDMREZFJ1qjhhxlgvzFqagNT0grshODsKmDHWy6aWeDbU7NmzcfLkSVy+fBnnz5/HkCFDcjzv6emJTZs2Yfr06QgLC1OoSssiayjOrnz58ihfvrxSpyeiXN544w24uroiOTmZgZiITKZ1/RKYN9kbS7Yk4rKeqRRNajphXB93BmId3NzccPLkScybNw/r169HeHg47O3tUbFiRfTo0QMffvihtJodGUYQ2bjOKsXExEgLoERHR/M/Bhnk3r17GDx4MPbv389ATEQmF/UwAzuOv8Dt6AykpGng4qRCjYoO6NmhFOcQk+xkD8UajQYhISE4ffo0YmNjkZKSgtmzZ+eYNpGeng61Wg07OzteaFdEDMVkCI1Go7OVDxERkS2R9afhzp07UaNGDXTt2hUzZszAr7/+ipUrV+Lp06c5tvv9999RqlQpeHt76201QkRFFxQUBA8PD0RERChdChERkeJkC8VLly5Fr169EBUVBVEUUaZMGZ1LDo4ZMwZubm5ISkrCli1b5CqRyGZou0w8f/4cDRs2RGRkpNIlERERKUqWUBweHo733nsPANCpUydcv34d8fHxOrd3dHREv379IIoi9u/fL0eJRDYjd9u10qVLo2zZsgpWREREpDxZQvGPP/4ItVqN+vXrY/fu3ahTp06B+3To0AEAcOnSJVOXR2Qz2IeYiIgof7KE4sOHD0MQBEyePBmOjo4G7VOjRg0AWReJEVHxMRATERHpJksojomJAQA0btzY4H1cXV0BACkpKSapiciWMBATERHpJ0soFoSsJR0LE3AfP34MIKs5NREVHQMxERFRwWQJxRUqVAAA3Llzx+B9Tpw4AQCoVq2aSWoishW//fabdJ+BmIiIKH+yhGJ/f3+IooiVK1catP2zZ8+wePFiCIKATp06mbg6Iut25coVVK5cmYGYiIhID1lC8fjx4yEIAo4ePYoVK1bo3fbx48fo3bs3YmNjYW9vjwkTJshRIpHVcnZ2xs2bNxmIiYiI9JAlFDdt2hQffvghRFHE6NGjMWjQIKxfv156/tSpU1i7di3ee+891KhRA8eOHYMgCPjqq69QuXJlOUokshrz58/Hnj17cjzm7OzMQExERKSHIOpaVs7IRFHE+++/j19//VW68E7XdgAwefJkzJs3T47SrFJMTAwqVqwIIKutnZ+fn8IVkRy0F9WpVCrs3LkTb775ptIlERERWQTZlnkWBAG//PIL9u3bB39/fwiCAFEUc9wA4JVXXsGuXbsYiIkKKXuXCY1GgylTpihcERERkeWQbaQ4txcvXuDSpUuIj49HZmYmypQpgyZNmsDLy0uJcqwOR4ptC9uuERERFY+9HCd55513AABvvvkmBgwYAAAoVaoUXn31VTlOT2TVGIiJiIiKT5ZQrG3FNmjQIDlOR2QzGIiJiIiMQ5Y5xWXLlgWQ9QObiIyDgZiIiMh4ZAnF9erVAwDcvXtXjtMRWb2TJ08yEBMRERmRLKF42LBhhVrRjoj0a9euHTp37gyAgZiIiMgYZAnFo0aNQufOnbFt2zbMnDkTCjW8ILIqBw8exOTJkxmIiYjMSFRUFARBKPaN5CdLS7Zjx47h5cuX+Oyzz3D16lXUqlULgwYNQqNGjeDh4QE7Ozu9+7NLReGxJZv1efDgAXx9fZUug4iI9IiKikLVqlWLfRy5BxD9/f1x9OhRdOzYEUeOHJH13OZClu4T2sU6tMLCwvDNN98YtK8gCFCr1aYqjcgiBAUF4ZNPPsF3332H//znP0qXQ0REOlSoUAFXr17V+XzDhg0BAC1atEBwcLBcZZEBZAnFgPy/8RBZi+xdJqZNmwZfX1+MGDFC4aqIiCg/Dg4OaNCgQYHbubq6GrQdyUeWUBwSEiLHaYisTn5t1/r27atgRURERNZJllDcsWNHOU5DZFXYh5iIrF36rUg8X7ENaVfCoElOgcrVBU6NaqF0YC841i7+vFxLdfHiRSxZsgQhISG4f/8+RFGEn58fOnXqhClTpqBWrVo6901MTMQvv/yCnTt34ubNm0hKSoK7uzvKli2L2rVro2vXrujbt6+0dkRgYGCO7mBHjx7Nc6Ff5cqVERUVZZLXak5kmz5BRIZjICYia5Z66QYez1yE1FOX8z539iqe/b4Jzm2boMzMd+HctK78BSpEo9Fg6tSpmD9/fp5pp2FhYQgLC8Pvv/+OX375BePGjcuz/40bN9ClSxc8ePAgx+MJCQlISEjAjRs3sHXrVmRmZuL999836WuxRCYNxbt27cLevXtx9+5dZGZmwtfXF/7+/hg4cCAcHBxMeWpFaa/gNATnWlNuDMREZM2SD55B3OivIKak6t0u9dRlPOj9Acot+wauXdrIVJ2yJk2ahEWLFgHI6rwVGBiIatWqwcXFBf/88w/mz5+Pa9euYfz48Shfvjx69uyZY//hw4fjwYMHcHBwwNixY/Hmm2+ifPny0Gg0iImJwZkzZ7Bly5Yc+8yePRtTp07FqFGjcP78+XwvAHR0dDTtCzcTJmnJFhcXh969e+Ps2bP5Pl+lShVs3bpVugLT2phDKGZLNsvEQExE1iz10g086DUJ4ss0g/cRXJzhu/Vnqxkx1k5NyN367MCBA+jatSsA4Pfff8fo0aPz7JuamooePXrg8OHDqFy5Mm7fvg17+6zxzTt37qB69eoAgAULFugcCRZFEYmJifDw8MjxOFuymWCkODMzEz179sS5c+d0bhMZGYlu3brhypUr8PLyMnYJZoPtVqiw4uLipPsMxERkbR7PXFSoQAwAYkoqHs/6FRW2/myiqszDnDlzAAD9+vXLNxADgLOzMxYuXIh69erh7t27CAkJweuvvw4AiI2NlbbTt76DIAh5AjFlMfqKduvXr8e5c+cgCAJq1KiBZcuW4erVq7h58yY2bNiANm2y/gQSFxeHoKAgY5/erGjbrei7EWX3f//3f5g6dSp8fX0ZiInIqqTfisx3DrEhUk9eQnpYlFHrMSfPnz+XRmf79++vd9u6detKA4qnT5+WHvfx8ZHur1ixwug12gKThGIga4rE2bNnMWrUKNSvXx+1atVCv379cPz4cXTs2BGiKGLDhg3GPj2RxZs7dy6io6MZiInIqjxfsa14+wdvNU4hZujSpUvQaDQAgLfffrvAJaATEhIA5Bwdrlq1Kjp06AAA+PHHH1G/fn1Mnz4dhw8fRkpKivwvygIZPRRfunQJgiDg448/hru7e57n7ezsMGvWLABZ0yhevHhh7BKILEZQUBCGDBmS53GVyuj/NYmIFJV2Jax4+18NN1Il5ic+Pr5I++UOu3/++SdeeeUVAMD169fxzTffoHPnznB3d8err76KxYsXIzVV/wWOtszoc4ofPXoEIGs+rS7Zn0tISECpUqWMXQaR2ct+UZ1arZb+ykJEZI00ycUbrdQkWe9oZ2ZmpnT/t99+Q9u2bQ3aL/fc4AoVKuDUqVM4dOgQNm/ejKNHj+L69evIyMjA8ePHcfz4cfzwww/YvXu33l7Htsroofjly5cQBEHvn35dXFyk+9b8G8vNmzfRunVr3Lp1C6mpqfDy8kLz5s3Rr18/vP3221bdlo70y91l4vjx49BoNBwhJiKrpXJ1KXgjffuXLN7+5qxMmTLSfRcXl2Jfc9S5c2d07twZAPD48WMcPHgQS5YsweHDhxEREYFBgwbh0qVLxTqHNVL8J7A19+mNi4vD2bNn8ezZM6SlpeH+/fvYvn07Ro4ciSZNmuDGjRtFPnZMTIze28OHD434SsiY8mu7Fh4ezkBMRFbNqVHxRiadGtY0UiXmp0mTJlKrtpMnTxr12GXKlMGgQYNw6NAhqa/x5cuXER6eczpK7lXsbBF/CpuASqVC586dERQUhIMHD+LSpUs4duwY5s+fj7p1s/osXr9+Ha+99hru3btXpHNUrFhR761Vq1bGfElkJOxDTES2qnRgr+LtP6q3cQoxQ2XLlpW6c61du1aaimps2tFjANLFelrOzs4AgLS0wrXMsyYmW9Fu0aJF8Pb2Nsp206dPN1ZZsti8eXO+Fxl26NAB7777LsaOHYuVK1ciLi4OkydPxubNm+UvkmTHQExEtsyxdlU4t21SpLZszu2awrFWFaPXZE6+/PJL9OjRA8+fP0f//v2xbdu2fLMEkBVctQt8aMPs5cuXAWSNOudHFEUcPHgQQNaocJUqVXI8r23pdufOHYiiaJMjx0Zf0U6lUhn9E5l9ArqxGKPG4OBgBAYGFno/tVqNBg0a4NatWwCypkJUqFChUMeIiYnR+/zDhw+l0WKuaKc8BmIiov+taNf7gwKXeM7OVla0A4DJkyfjp59+AgCUL18eEyZMQPv27VGmTBkkJyfj9u3bOH78ODZv3oynT5/ixYsX0s+RFStWYNSoUWjZsiUCAgLQrFkzlC9fHhkZGYiMjERwcDAOHDgAAOjVqxe2bt2a49y///47xo4dK9UxbNgwuLm5AQAcHBxQuXJlU31KzIZJQrExCYJgdaEYyOpF++mnnwIA/vjjj3zbchUHl3k2H4mJiShTpozUg5KBmIhsWfLBM4gb/ZVBwVhwcUa5Zd/AtUsbGSqTh75QLIoivvnmG3zzzTdQq9V6j+Pq6opHjx6hRIkSAP4NxQVp27Yttm/fnuPiPgBISkpC48aNcefOnTz7VK5cGVFRUQUe29IZffpESEiIsQ9pEsW5yE0r++oxhVWvXj3p/v3794tdC5kvd3d3rFq1CsOHD4e3tzcDMRHZNNcubeC79Wc8nvUrUk/q7oDg3K4pysyYaDUjxIYQBAHTp0/H8OHDsXjxYhw+fBh37tzBs2fP4OLigooVK6Jp06bo2rUr+vTpIwViIGvRj3LlyuHAgQM4d+4c7t+/j7i4OKjVanh7e6NZs2YYNGgQBg8enO8AZsmSJXHq1Cn897//xf79+3H37l2bW/TD6CPFZJjdu3ejR48eALKW9v3kk0+MenyOFJufPXv2oEOHDgzERET/k34rEs9XbEPa1XBoklKgKukCp4Y1UXpUb6ufQ0zmx2QX2pF+169fl+77+voqWAmZws6dO/HGG2/A3v7f/2JvvvmmghUREZkfx9pV4fXfyUqXQQSALdkUoVarsXz5cunjV199VcFqyNiCgoIQEBCAJk2aFDgnjIiIiMwDQ7GRhYSEIDExUefzGRkZGDNmjDSnOSAgQJrmQJYve5eJa9euFflCTCIiIpIXp08Y2cqVK9GzZ0/07NkT/v7+qF27NkqXLo2kpCRcuHABS5YskaZOeHt7S61XyPLl13Zt8eLFClZEREREhmIoNoGkpCSsXbsWa9eu1blNw4YNsW7dOlStWlXGyshU2IeYiIjIsjEUG9lnn32GJk2a4PTp07h+/ToePXqEJ0+ewMnJCeXKlUOLFi3Qv39/9OnTB3Z2dkqXS0bAQExERGT52JLNSrElmzwYiImIiKwDL7QjKqKFCxcyEBMREVkJhmKiImrfvj0cHBwAMBATERFZOoZioiJq0qQJzp49i8aNGzMQExERWTheaEdUDE2aNMHly5eVLoOIiIiKiSPFRAYKCgpC+fLlkZCQoHQpREREZGQMxUQG0HaZiIuLQ61atRiMiYiIrAxDMVEBcrddc3R0hLOzs4IVERERkbExFBPpwT7EREREtoGhmEgHBmIiIiLbwVBMlA8GYiIiItvCUEyUCwMxERGR7WEoJsrlhx9+kO4zEBMREdkGhmKiXK5duwZPT08GYiIiIhvCFe2IcvH09ER4eDgcHR0ZiImIiGwER4rJ5i1cuBAXL17M8ZinpycDMRERkQ1hKCabFhQUhEmTJqFNmzZ5gjERERHZDoZislnZu0xkZGRg1KhRCldERERESmEoJpuUX9u1kydPKlgRERERKYmhmGwO+xATERFRbgzFZFMYiImIiCg/DMVkMxiIiYiISBeGYrIJu3fvZiAmIiIinRiKySa88cYbaNCgAQAGYiIiIsqLK9qRTVCpVLh69arSZRAREZGZEkRRFJUugoxPrVYjNjYWAFC+fHnY2/P3HyIiIiJdGIqJiIiIyOZxTjERERER2TyGYiIiIiKyeQzFRERERGTzGIqJiIiIyOYxFBMRERGRzWMoJiIiIiKbx1BMRERERDaPoZiIiIiIbB5DMRERERHZPIZiIiIiIrJ5DMVEREREZPMYiomIiIjI5jEUExEREZHNYygmIiIiIpvHUExERERENo+hmIiIiIhsHkMxEREREdk8hmIiIiIisnkMxURERERk8xiKiYiIiMjmMRQTERERkc1jKCYiIiIim2evdAFk+dRqNWJjY5Uug4iIiGxQ+fLlYW9f/EjLUEzFFhsbi4oVKypdBhEREdmg6Oho+Pn5Ffs4nD5BRERERDZPEEVRVLoIsmycPmFbHj58iFatWgEAzp49Cx8fH4UrIkvC7x8qLn4PUW6cPkFmw97e3ih/tiDL4+Pjw689FRm/f6i4+D1ExsTpE0RERERk8xiKiYiIiMjmMRQTERERkc1jKCYiIiIim8dQTEREREQ2j6GYiIiIiGweQzERERER2Twu3kFERERENo8jxURERERk8xiKiYiIiMjmMRQTERERkc1jKCYiIiIim8dQTEREREQ2j6GYiIiIiGweQzERERER2TyGYiIiIiKyeQzFRERERGTzGIqJiIiIyOYxFBNRoezZsweCIEi3mTNnFut4R44cyXE8fbfinovks2vXLsycORM9evRA3bp14eXlBQcHB3h4eKB58+b4+OOPcevWLaOeMzQ0FOPHj0f16tVRokQJlC1bFh06dMDixYuhVquNei4yvaSkJBw7dgw//PADBg4ciKpVq0rvBVWqVDHaefgeRFr2ShdARJYjOTkZEydOVLoMMnNqtRpvvfVWvs8lJibi4sWLuHjxIhYsWICvv/4a//nPf4p9zqVLl+L9999Henq69FhqaipOnDiBEydOIDg4GLt27YKXl1exz0XyCAgIwJEjR5Qug2wIQzERGeyrr77C3bt34e3tjfj4eKMff/ny5WjZsqXO5729vY1+TjINNzc3+Pv7o3Xr1qhWrRp8fHzg4uKCBw8e4MiRI1i+fDmePXuGadOmwd3dHRMmTCjyuXbv3o0JEyZAo9GgXLly+OKLL9C6dWs8efIES5cuxebNm3H27Fn06dMHR44cgZ2dnRFfKZmKKIrSfU9PT7Ro0QKnTp1CUlKSyc7J9yAbJxIRGeD8+fOinZ2d6OTkJC5dulQEIAIQZ8yYUazjhoSESMcKCQkxSq2kPLVarff5O3fuiB4eHiIAsWzZsgVur0t6erpYrVo1EYBYunRp8fbt23m2effdd6XvseDg4CKdh+T322+/iWvXrhXDw8OlxypXriwCECtXrmy08/A9iLQ4p5iICpSZmYmxY8ciMzMTn3/+OWrUqKF0SWTmChqNrVq1KgYOHAgAePToEW7evFmk82zZsgV37twBAEybNg3Vq1fPs83cuXPh4eEh3SfLMG7cOLz99tt8vyHZMBQTUYF+/PFHXLp0CbVq1cJnn32mdDlkJUqVKiXdT01NLdIxtm7dKt0PDAzMdxsXFxcpgF+/fh1hYWFFOhcRWTeGYiLSKyoqCjNmzAAA/Prrr3ByclK4IrIGL1++xLZt2wAAKpUKtWrVKtJxTpw4AQCoXbs2ypcvr3O7jh07SvdPnjxZpHMRkXVjKCYivSZOnIiUlBQMHToUnTp1Mum5vvjiC1SuXBlOTk7w8PBA06ZNMWXKFI7sWYmMjAzcu3cP69atQ9u2bREeHg4AeOedd3KMGhsqKSkJ0dHRAIA6dero3Tb78zdu3Cj0ucg28D3ItjEUE5FOa9euxd69e+Hu7o558+aZ/HynTp3CvXv3kJ6ejsTERFy+fBnz589H3bp1MXPmzBxXo5NliIqKknq8Ojo6onLlynj77bdx+fJlAEC3bt0QFBRUpGPHxMRI9/38/PRuW7FiRem+NkgT5cb3INvGlmxElK8nT55gypQpAID//ve/Jm1F5OPjg759+6J9+/aoVq0a7O3tce/ePezcuROrVq1CRkYGZs2ahfT0dHz33Xcmq4Pk4+XlhV9++QX9+vUrcou0Fy9eSPdLliypd1tXV1fpvilbepFl4nsQAQzFRKTD1KlTER8fj9atW2PcuHEmO0/Lli1x9+5dODg45Hi8WbNm6N27N8aNG4euXbvi2bNnmDNnDgYNGoTGjRubrB4yrgoVKuDq1asAshb1uH//Pvbu3Ytly5ZhwoQJiIiIwLRp04p07OwX5zk6OurdNvtc+JcvXxbpfGSd+B5EWpw+QWTBDF2aVN9txYoVeY575MgRBAcHw87ODosXL4ZKZbq3CldX1zw/jLJr1aoVFi5cCCCrmb/2PhWfqb5/snNwcECDBg3QoEEDNGnSBD169MCCBQtw5swZCIKAzz//HO+8806R6nd2dpbuZ1/JLj9paWnS/RIlShTpfJSXHN9Dpsb3INJiKCaiHNLS0jB+/HgAwAcffIAmTZooWxCAwYMHo3Tp0gCAo0ePKlwNGUOjRo3w7bffAgCCg4Oxf//+Qh8j+8V5BU2JSE5Olu4XNNWCKDe+B9kGTp8gsmDGuIrex8cnx8ebN29GWFgYHBwcUK9ePaxbty7PPtevX5fuh4aGStu0bt0aVatWLXZNudnb26NWrVo4f/487t+/b/Tj2ypTfP8URq9evfDuu+8CADZu3IiuXbsWav8KFSpI97NfdJef7BfXZb/ojopH6e8hufA9yDYwFBNZsILaUBWF9s/MGRkZGDt2bIHbb9q0CZs2bQKQNeJnilAMZP2ZlozLFN8/hVG2bFnp/t27dwu9f6lSpVCxYkVER0cXuCJe9ufr1q1b6HNR/pT+HpIT34OsH6dPEJHZU6vVUp9QX19fhashY8k+4lbUKQ3t27cHANy6dQuxsbE6t8v+J+927doV6Vxku/geZBsYiokoh8DAQIiiqPcWEhIibT9jxgzpcV3L7BbXX3/9hWfPngHIuTIZWbYNGzZI9xs2bFikY/Tu3Vu6r+uCrZSUFKxfvx4AUK9evSKvnke2i+9BtoGhmIhMJvvCDf7+/nmef/r0KY4cOaL3GGfPnsX7778PIOvPlxMnTjRBpWRMW7duxcOHD/Vuc+zYMXz99dcAsuZrvv322/lup/3+qVKlSr7P9+nTB9WqVQOQ1U87IiIizzaffPIJnj59Kt0n28H3ICoMzikmIsU8e/YMr732Gho1aoTevXujefPm8PHxgZ2dndQ4f/Xq1VK7ralTp6J58+YKV00F2bp1KwYNGoQePXqgc+fOqF+/Ptzd3ZGWloaIiAjs2LED69evh0ajAQBMnz4dtWvXLtK5HBwcsGDBAgQEBOD58+do164dvvzyS7Rq1QpPnz7F0qVLpTnv7du3x/Dhw432Osm0bt++jRMnTuR4TNtlJCkpKc9fBt544w2UL1++UOfgexBlx1BMRIq7cuUKrly5ovN5Ozs7fPXVV5g+fbqMVVFxpKenY8uWLdiyZYvObUqUKIFvv/0WH330UbHO1b17dyxevBjvv/8+4uLiMGnSpDzbtGrVClu2bCny6nkkvxMnTmDUqFH5Pvf48eM8z4WEhBQ6FGvxPYgAhmIiUpCvry82bNiA06dP4+zZs7h//z4SEhKQmpoKNzc31K5dG/7+/hgzZozOP5+T+fm///s/dOzYEceOHUNoaCji4uIQHx8PlUoFT09P1K9fH506dcKIESOM1o5r7NixeOWVV/Dzzz/j0KFDePDgAVxdXVG3bl0MHToUY8aMgb09f+RRTnwPouwEURRFpYsgIiIiIlISL7QjIiIiIpvHUExERERENo+hmIiIiIhsHkMxEREREdk8hmIiIiIisnkMxURERERk8xiKiYiIiMjmMRQTERERkc1jKCYiIiIim8dQTEREREQ2j6GYiIiIiGweQzERERER2TyGYiIiIiKyeQzFRERERGTzGIqJiIiIyOYxFBMRERGRzWMoJiIii/T48WN4enpCEAScO3dO6XLIQqSkpMDb2xuCIODIkSNKl0NmhKGYyMZERUVBEIRi36zNzJkzC/052Lp1q9Jl27Tp06fj6dOn6N69O1q2bGm046ampsLd3R2CIKBKlSoQRbFQ+w8ZMkT6Hrl06VKxahk3bhwEQUCvXr2KdRz6l4uLCz766CMAwOTJkwv99SXrxVBMREQW5+7du1i6dCmArHBsTM7OzhgwYIB0nuPHjxu874sXL6Rflho0aICmTZsWuQ5RFLFz504AQEBAQJGPU1SBgYHSLwbW5r333oOnpyf++ecfbNiwQelyyEzYK10AEcmrQoUKuHr1qs7nGzZsCABo0aIFgoOD5SrLrCxfvtygkcfKlSvLUA3l5/vvv0dGRgbatWuH1q1bG/34I0aMwO+//w4AWL16NV599VWD9tu0aRNevnwpHaM4Lly4gIcPH0IQBPTo0aNYx6KcSpUqhXHjxmHOnDn49ttvMXDgQKVLIjPAUExkYxwcHNCgQYMCt3N1dTVoO2tUtWpVm33tliAxMRGrVq0CAAwbNswk52jfvj2qVq2KyMhIbNiwAQsXLoSTk1OB+61evRoAYGdnh6FDhxarhh07dgDI+gXVx8enWMeivIYMGYI5c+bg6tWrOHLkCPz9/ZUuiRTG6RNERGRR1q1bh+TkZDg4OEjTHIxNEAQMHz4cAPDs2TMpoOoTExMjXbjVuXNn+Pr6FqsG7TnfeuutYh2H8tewYUPpL2PLli1TuBoyBwzFRGQwf39/CIIgjaiEh4fj/fffR82aNeHi4gJBEBAVFQUAWLFihXSxkfax/GS/8G/FihV6z79161YMGDAAlSpVgrOzM9zd3dGiRQvMmjULT58+Nc6LLIb8XsuBAwcQEBCA8uXLw8nJCVWrVsXEiRMRExNj0DFDQkIwcuRIVKtWDS4uLihdujQaNmyITz75BA8ePNC5X/YLB4GsYPfNN9+gadOm0kVkuT/fjx8/xqefforatWujRIkSKFeuHF5//XVs2bIFgO6v6fbt26XH161bV+Br+vjjjyEIAuzt7fW+Bl3Wr18PIOv7sUyZMgVun5qaioULF6Jz584oX748HB0d4e3tjS5dumDZsmVQq9X57pd9+oN2BFifP/74AxqNJs++RXH//n3pIr2izCfWaDQ4fPgwpk6dinbt2sHLywsODg5wd3dHkyZNMHXqVNy7dy/ffbXfOytXrgSQNa/a0Itto6KiMGXKFNSvXx+lSpWCi4sLatasifHjx+udtgVAOu7MmTMBZH3v9+7dG76+vihRogTq1q2Lb775BsnJyTn22717N7p37y5tV69ePfz3v/9Fenp6gZ+nfv36Ach6b0lNTS1we7JyIhFRNgBEAGLHjh3zPNexY0fpua1bt4qurq7S9tpbZGSkKIqiGBwcnOex/ERGRkrbBQcH57vNkydPxE6dOuU5V/abt7e3ePr06SK/7hkzZkjHCgkJKdIxcr+W//znPzrrLVu2rHj9+nWdx3r58qU4ePBgva/Z1dVV3L59e4GvJywsTKxSpUqe/bN/vq9cuSKWK1dO57nGjRun82uqVqtFHx8fEYDYrVs3vZ+jjIwM0dvbWwQg9ujRo1CfX1EUxdTUVNHJyUkEIH711VcFbn/58mWxcuXKej+PLVu2FGNjY/Pdv23btiIA0cHBQUxISNB7rvr164sAxFKlSonJycmFfm3ZLV68WAQg+vn5FWn/7F9/XTcXFxdx8+bNRdo3v/iwcuVK6WuT383Ozk787rvvdNas3W7GjBnif//7X1EQhHyP07ZtWzEpKUnUaDTiBx98oPN8b7zxhqhWq/V+nvbu3Sttv3///sJ/osmqMBQTUQ6GhOKqVauKJUuWFMuWLSvOmTNHPHnypHjmzBlxwYIF4qNHj0RRNF4oTk1NFZs1ayb9UB0+fLj4559/imfOnBGPHz8uzp49WyxTpowIQPTw8BCjoqKK9LqNHYq1Yapjx47i2rVrxfPnz4sHDx4UR4wYIW3Tpk2bfI+j0WjEHj16SNsFBASIq1evFk+ePCmePn1a/Omnn8RKlSqJAERHR0fx3Llzel9Po0aNRAcHB3HSpEnigQMHxPPnz4t//vmneOrUKVEURfHp06eir6+vtP3w4cPFPXv2iOfPnxfXrVsnvvLKKyIAsXXr1jq/ptOmTRMBiCqVSoyOjtb5Odq6dat0jE2bNhX6c3z8+HFpf12/EGiFh4eLbm5uIgCxdOnS4rRp08QtW7aI58+fF/ft2ye+9957or29vfTa0tPT8xxDG04BiAsXLtR5rosXL0rbBQYGFvp15ab9+k+YMKFI+3/xxReij4+P+O6770rfOxcuXBC3bt0qfvrpp2LJkiVFAKKzs3OeX87i4uLEq1evir169RIBiL6+vuLVq1fz3LLbuXOnFGJLliwpzpgxQzx+/Lh4+vRpMSgoSPTy8pI+P4sWLcq3Zu3zrVq1EgGIr7zyivR/Z+/eveKbb74pbfPFF1+IQUFBIgDxzTffFDdt2iReuHBB3LZtm9imTRtpu19//VXv5+nJkyc5jkm2jaGYiHIwJBRrf1DevXtX53GMFYo///xzEYDo7u4unj9/Pt9jREVFSSOVQ4YMKegl5it7iFy+fHm+ISD77datW3pfCwBx7NixokajybPdmDFjpG0uXryY5/klS5ZIo5N79uzJt94nT55II5Pt2rXT+3pUKpW4b98+na998uTJ0rbz58/P87xarZYCkq6v6e3bt6VQNHv2bJ3n6tmzpwhkjZTnF0IL8v3330s16AvfovjvKG/Tpk2lX9Zy27Nnj6hSqUQA4pIlS/I8//TpU2n0U9cvMaIoilOmTJHqOnz4cOFeVC4pKSliiRIlRADizp07i3SMyMhIvZ/f6OhosUKFCiIAcdiwYfluM3LkSBGAWLlyZb3nSk9Pl36pKlmypHjp0qU822T/P+ri4pLv1yP791e/fv3yjPKq1Wop8JYqVUp0dnYWJ0+enOc4ycnJ0l8HGjVqpLd2URTFqlWrSiPLZNsYiokoB0ND8apVq/Qexxih+MWLF9JI34IFC/Seb9GiRVKQTEpK0rttfgz9k7H2ll9QyP5afHx8xNTU1HzPdfPmTWm7n376KcdzGo1GrF69ughA/Pjjj/XWvHv3buk4YWFhOl/PO++8o/MYqamporu7uwhkTSPQJTY2VnR2dtb7NX3ttddEAGLNmjV1HkM7MjtlyhS9r02XSZMmSTWkpaXp3O7YsWPSdleuXNF7zIEDB0qj+/np37+/dKzw8PA8z6vVarF8+fIiALFSpUr5/iJUGNu3b5fC48uXL4t1LH3mz58vjaLnV7Ohofivv/6SPj9z5szRud2aNWuk7f7v//4vz/Pa51xcXMTHjx/ne4zly5dL21WsWFFn8J8+fbq0XWJiot76tX8BqVWrlt7tyPrxQjsiKjRHR0eTXfWf3dGjR/Hs2TMAQP/+/fVuq+0jm5GRgQsXLpi8toL0799fZwuv2rVro2TJkgCAO3fu5Hju+vXriIiIkI6hT/beuadPn9a5nb7WYOfPn0diYiIA/e3NypUrh27duumtZ8yYMQCyLsA8ceJEnufXrFkjXdT2zjvv6D2WLo8ePQKQtSqZo6Ojzu22b98OIOtzre0woIv283ju3Ll8L7obOXKkdD+/C+4OHDiA2NhYAFmfw+Ku+KjtOtGlSxc4OzsX61haz58/R2RkJK5du4bQ0FCEhobCxcUlx3NFdfDgQQBZF8rp+7oOGDAAbm5uOfbJz+uvvw5PT898n2vcuLF0v2/fvnBwcChwu4Jem/Zc2q8h2S6GYiIqtJo1axrth7U+58+fl+77+PjoXXI5e1/h4v5wCwkJgZj1lzSdN30dNQCgTp06ep/38PAAkLUCWnbZX/Mrr7yi9zVrgzWg/zU3atRI53OhoaHS/ebNm+utuUWLFnqf79u3r/S68lv4RftYy5Yti9wH+smTJwD+/fzpov083rp1q8Dlut9//30AWb9QaY+f3RtvvAFvb28AWR0mcsselLVt3IpKNOIqdnfv3sWkSZNQpUoVuLm5oVq1amjQoIHUimzcuHHStgkJCUU+j/Z7qGrVqihbtqzO7RwdHaUV/rJ/3+VWq1Ytnc+5u7sXervc/8dy034v5e5qQbaHoZiICq2gQGIs8fHxRdovJSXFyJUUnnYUTheVKuvtNzMzM8fjpnjN+r5e2VvZ6Qs0hjzv7OwsjTavX78+R8g4e/Ysrl27BqDoo8TacwCQVo3TxZifR3t7e7z99tsAgIiICJw6dUp6LikpSVrWuWXLlgX+MlQQY61it2fPHtSrVw8LFy7E3bt3C9y+oM+nPtpfJLS/OOhTvnz5HPvkR9//He3/m8Jsl/v/WG7a165r1JlsB1e0I6JCs7Ozk+U82X+YXbx40eAfWn5+fqYqyeSyv+YdO3agSpUqBu2nL5DI9fUCsqZQLFiwAElJSdi4caM09UA7SlyiRAkpYBaFNpgnJiZCFEWdUxW0n8fGjRtjzZo1Bh+/QoUK+T4+YsQI/PTTTwCyRobbtm0LIGtZZ22QLm5vYgDSKHHz5s2LvIpdQkIChgwZgpSUFJQsWRJTp05Ft27dUL16dbi5uUnTTg4fPozOnTsDyBqhLq7iThtRijagZx9dJtvEUExEJpF9pEa7oEF+9P3JMvvCDGXLlrXosGuo7K/Z3d3d5MtNZx9FfvTokd4/SWvn8+rTqFEjtGzZEufOnUNwcDBGjhyJ1NRUaVGPvn37SvNKi0IbijUaDZ49e6YzyGg/j0lJSUb5HDZr1gz169fHtWvXsH79evz0009wdHSUpk44ODgUK+xraecTF2fqxMaNG6V54lu2bEGXLl3y3U7faG1haOfkxsXFFbitdpqPrjnDStD+taRSpUoKV0JK4/QJIjKJUqVKSff1rTYXFham8znt/EMAOHnypHEKM3Nyv+b69etL9wu6QDH7fGd9tBfcHTt2DHfu3MHmzZulkFacqRMAclw0Z8j3zp07d4x2AZV2JPjJkyfYvXs37t+/j5CQEABA9+7dDVpdT5/79+/j4sWLAIoXirXTVDw9PXUGYqDgr6ehI7/aXzoiIyP1/uKUkZEhrdJn6l/2DKXRaKSLXbP/XyDbxFBMRCZRtWpV6b6+H75//vmnzue6dOkizRv8+eefjfInXnPXrFkzaUR8yZIlJl96tkWLFtLIrb5pBnFxcdi3b59Bx3z77bfh6uoKURSxYsUKaepE1apV8dprrxWr3g4dOkj3z507p3O7nj17AsiaFqCd9lBcw4YNk/4Csnr1aqMu6wz8O3XCz88vxy9HhaXtoJGamqrzrzQpKSkFLl2tnb+dlpamdztt8BZFMd8LLLU2btwodZPRF9bldP36dSQlJQEAWrdurXA1pDSGYiIyiQYNGkh/Il24cGG+P1jXr1+PDRs26DyGu7u71Bng1KlTmDJlit6pGHFxcfj999+LWbmyVCoVPv/8cwBZo5wjRozQG0qeP3+OhQsXFvl8zs7OUqA7d+5cvgFSo9Fg/PjxBgf0UqVKYeDAgQCA3377DYcPHwYABAYGFnveacWKFVG5cmUAWRfv6dK1a1e0atUKADB37lysX79e73GvXr0qTV3QxdfXV5qDu3PnTixduhRA1ojsW2+9ZfBr0EV7/uJcYAdkdYcBsoJvfq87MzMTY8aMwYMHD/QeRzunOT4+Xm8Hh969e8PX1xcAMHv2bFy9ejXPNtHR0Zg6dSqArAvkRo0aZdiLMbHs30Ndu3ZVsBIyBwzFRGQS9vb2GD9+PICs9kudOnXCtm3bcOnSJezduxejR4/G22+/LV2wpMvXX38tjeD89NNPaNasGX755RecPHkSly9fRkhICBYuXIjevXujUqVKWLx4cbFrj4yMlHq56ruZqq/phAkT0KdPHwDAhg0bUL9+fcydOxdHjx7F5cuXcezYMSxZsgRDhgyBr68vZs6cWazzzZw5U+oKMHnyZIwYMQL79u3DxYsXsX79enTo0AHbtm2TQiZQ8J/WtVMo4uPjodFooFKpEBgYWKw6tXr16gXg39Z5uqxduxaenp7IzMzEoEGD0LNnT/zxxx84e/YsLly4gD179uC7777DK6+8gkaNGuHo0aMFnlv7C0R6ejpu374NABg0aJDensmGePnypfTLQ3FbsQ0cOFDqkT1q1Cj85z//waFDh3D+/HmsXLkSrVu3xp9//ol27drpPY72/6ZGo8GECRNw5swZ3L59W7ppOTo6YsmSJRAEAc+fP0e7du3wzTff4NSpU/j777/x448/okWLFlII/+GHH+Dl5VWs12gshw4dApB1QWb2v26RjZJ/vRAiMmcwYEW7/J7LT3JysrQsa343f39/MTQ0VOeKdlrPnz8X+/bta9BKc6+99lqRXndhV7QDIH744Yc5jlHQktXZaZehHTlyZL7Pp6enixMnTpSWTtZ3q1q1qt7XY4jLly+LZcuW1XmOwMBAcdmyZdLHsbGxBR6zXr160vavv/66QXUY4urVq9Jxjx49qnfbW7duiQ0aNDDo6zlr1qwCz52cnCyWLFkyx36nT58u9msy9ip2y5cvl5avzu82aNAg8eDBg9LHISEheY6RmZmp9/9vbitWrJCWxM7vZmdnJ3733Xc6a9ZuN2PGDJ3bGPp/LCQkRO9rE8Wsr6Wrq6sIQJw7d67OY5Ht4EgxEZmMi4sLDh8+jNmzZ6Nhw4YoUaIESpcujZYtW2LhwoU4ePAgXF1dCzxOqVKlsGnTJhw/fhxjxoxB7dq1UapUKdjb28PT0xMtW7bEe++9h927d+PAgQMyvDLTc3BwwKJFi/DPP/9g0qRJaNiwIdzc3GBnZwc3Nzc0adIEo0ePxsaNG3Hjxo1in69x48a4fv06Pv74Y9SsWRNOTk7w8vLCa6+9hrVr1yI4OBjPnz+Xtjekg0T2FfKKe4Fddg0aNMArr7wCIGs0WJ9atWrh8uXLWLt2Lfr164dKlSqhRIkScHR0hI+PD/z9/fHll1/iwoULmD59eoHndnFxybHSYM2aNdGmTZvivSAYfxW7UaNG4fjx4+jduzfKli0LBwcH+Pj44I033sBff/2FdevWFdiqT6VSYf/+/fjyyy/RuHFjlCxZUu9fCEaOHImbN2/iww8/RN26deHq6ooSJUqgevXqGDt2LC5duoRp06YV+7UZy7Zt25CcnAxnZ2ezmc5ByhJE0QauXCEiomIbM2YMli1bBj8/P0RHRxe4/dChQ7F27Vp4eHjg4cOHOpe9Lor169dj0KBB8PDwwL1793Ks7mdpRFGEn58fHjx4gCVLlmDs2LFKl2QTunTpgkOHDmH8+PFGmXZFlo8jxUREVKCXL19i27ZtAGDQyGhiYiK2bNkCICscGzMQA8CAAQPQvHlzPH36tFgXGpqDixcv4sGDBxAEwSgX7FHBzpw5g0OHDsHR0VG6sJWIoZiIiBAREaHzorXMzExMnDgRCQkJACCtUqfPzz//LC2fO2HCBOMV+j+CIOD7778HAMybN0/vIjDmLjMzEzNmzMCPP/5Y5FXsqHBmzZoFAPjwww+5aAdJOH2CiIgQGBiIs2fPYvDgwWjdujW8vb3x8uVLXLlyBUuXLpUWlejSpQv279+fZ26pWq1GVFQU0tLSEBISgqlTpyItLQ09e/aURphNYcGCBXj8+DEGDhyIevXqmew8ZD1SUlIwd+5cAMCUKVNQunRphSsic8FQTERECAwMxMqVK/Vu065dO2zbti3flduioqLytLRyc3PDhQsXUL16daPWSkRkCvZKF0BERMqbNm0aatWqhYMHDyIqKgqPHj1CRkYGypQpgxYtWmDQoEEYPHiwtKKbPt7e3njllVcwe/ZsBmIishgcKSYiIiIim8cL7YiIiIjI5jEUExEREZHNYygmIiIiIpvHUExERERENo+hmIiIiIhsHkMxEREREdk8hmIiIiIisnkMxURERERk8xiKiYiIiMjmMRQTERERkc1jKCYiIiIim8dQTEREREQ2j6GYiIiIiGweQzERERER2TyGYiIiIiKyeQzFRERERGTzGIqJiIiIyOYxFBMRERGRzWMoJiIiIiKb9/9lpszKAqNfmQAAAABJRU5ErkJggg==", "text/plain": [ "