.. toctree:: :hidden: :maxdepth: 2 quickstart/root .. toctree:: :maxdepth: 2 :hidden: :caption: CLI Reference cli/graph-pes-train/root cli/graph-pes-resume cli/graph-pes-test cli/graph-pes-id .. toctree:: :maxdepth: 4 :hidden: :caption: API Reference data/root models/root fitting/root building-blocks/root utils .. toctree:: :maxdepth: 2 :caption: Interfaces :hidden: interfaces/mace interfaces/mattersim interfaces/orb .. toctree:: :maxdepth: 2 :caption: Tools :hidden: tools/torch-sim tools/ase tools/lammps tools/analysis .. toctree:: :maxdepth: 2 :caption: About :hidden: theory development .. image:: _static/logo-text.svg :align: center :alt: graph-pes logo :width: 70% :target: . ######### graph-pes ######### .. raw:: html :file: hide-title.html **Date:** |today| - **Author:** `John Gardner `__ - **Version:** |release| ``graph-pes`` is a package designed to accelerate the development of machine-learned potential energy surfaces (ML-PESs) that act on graph representations of atomic structures. The core component of ``graph-pes`` is the :class:`~graph_pes.GraphPESModel`. You can take **any** model that inherits from this class and: * train and/or fine-tune it on your own data using the ``graph-pes-train`` command line tool * use it to drive MD simulations via :doc:`LAMMPS ` or :doc:`ASE ` We provide many :class:`~graph_pes.GraphPESModel`\ s, including: * re-implementations of popular architectures, including :class:`~graph_pes.models.NequIP`, :class:`~graph_pes.models.PaiNN`, :class:`~graph_pes.models.MACE` and :class:`~graph_pes.models.TensorNet` * wrappers for other popular ML-PES frameworks, including :doc:`mace-torch `, :doc:`mattersim `, and :doc:`orb-models `, that convert their models into ``graph-pes`` compatible :class:`~graph_pes.GraphPESModel` instances Use ``graph-pes`` to train models from scratch, experiment with new architectures, write architecture-agnostic validation pipelines, and try out different foundation models with minimal code changes. **Useful links**: .. grid:: 1 2 3 3 :gutter: 3 .. grid-item-card:: ๐Ÿ”ฅ Train :link: quickstart/quickstart :link-type: doc :text-align: center Train an existing architecture from scratch .. grid-item-card:: ๐Ÿ” Analyse :link: https://jla-gardner.github.io/graph-pes/quickstart/quickstart.html#Model-analysis :text-align: center Analyse a trained model .. grid-item-card:: ๐Ÿ”ง Fine-tune :link: quickstart/fine-tuning :link-type: doc :text-align: center Fine-tune a foundation model on your data .. grid-item-card:: ๐Ÿ”จ Build :link: quickstart/implement-a-model :link-type: doc :text-align: center Implement your own ML-PES architecture .. grid-item-card:: ๐Ÿงช Experiment :link: quickstart/custom-training-loop :link-type: doc :text-align: center Define a custom training loop .. grid-item-card:: ๐ŸŽ“ Learn :link: theory :link-type: doc :text-align: center Learn more about the properties of PESs **Installation:** Install ``graph-pes`` using pip. We recommend doing this in a new environment (e.g. using conda): .. code-block:: bash conda create -n graph-pes python=3.10 -y conda activate graph-pes pip install graph-pes Please see the `GitHub repository `__ for the source code and to report issues. **Contributing:** We welcome any suggestions and contributions to this project. Please visit our `GitHub repository `_ to report issues or submit pull requests. Please see our `CONTRIBUTING.md `_ file for more details.